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Optimal Noise Benefits in Neyman–Pearson and
Inequality-Constrained Statistical Signal Detection

Ashok Patel and Bart Kosko

Abstract—We present theorems and an algorithm to find op-
timal or near-optimal “stochastic resonance” (SR) noise benefits
for Neyman–Pearson hypothesis testing and for more general in-
equality-constrained signal detection problems. The optimal SR
noise distribution is just the randomization of two noise realiza-
tions when the optimal noise exists for a single inequality constraint
on the average cost. The theorems give necessary and sufficient
conditions for the existence of such optimal SR noise in inequality-
constrained signal detectors. There exists a sequence of noise vari-
ables whose detection performance limit is optimal when such noise
does not exist. Another theorem gives sufficient conditions for SR
noise benefits in Neyman–Pearson and other signal detection prob-
lems with inequality cost constraints. An upper bound limits the
number of iterations that the algorithm requires to find near-op-
timal noise. The appendix presents the proofs of the main results.

Index Terms—Inequality-constrained signal detection,
Neyman–Pearson test, noise-finding algorithm, optimal noise,
stochastic resonance.

I. NOISE BENEFITS IN SIGNAL DETECTION

S TOCHASTIC resonance (SR) occurs when noise benefits
a nonlinear system [1]–[14]. SR noise benefits occur in a

wide range of applications in physics, biology, and medicine
[15]–[26]. The noise benefit can take the form of an increase
in an entropy-based bit count [27]–[29], a signal-to-noise ratio
[30]–[32], a cross-correlation [3], [30], or a detection proba-
bility for a preset level of false-alarm probability [33], [34], or
a decrease in the error probability [35] or in the average sample
number of sequential detection problems [36]. An SR noise ben-
efit requires some form of nonlinear signal detection [10]. Its
signature often takes the form of an inverted-U curve or a non-
monotonic plot of a bit count or SNR against the variance or
dispersion of the noise process.

We focus first on the special case of SR in signal detection that
uses Neyman–Pearson (N-P) hypothesis testing [37] to decide
between two simple alternatives. We define the noise as N-P SR
noise if adding such noise to the received signal before making
a decision increases the signal detection probability while
the false-alarm probability stays at or below a preset level

for a given detection strategy. Fig. 1 shows this type of noise
benefit for a suboptimal receiver and does not involve the typical
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inverted-U curve of SR (but would if it used uniform noise and
we plotted the detection probability against the noise variance).

An SR noise benefit does not occur in an optimal receiver if
the noise is independent of the concurrent received signal and
the hypotheses. This follows from the so-called irrelevance the-
orem of optimal detection [38], [39]. But Section V shows that
SR noise benefits can occur even if the receiver is optimal when
the noise depends on the received signal. Fig. 3 shows such an
SR noise benefit in optimal antipodal signal detection when the
average signal power constrains the signal transmission.

Sections II and III present three SR results for Neyman–
Pearson signal detection. The first SR result gives necessary
and sufficient conditions for the existence of optimal N-P SR
noise. The existence of some N-P SR noise does not itself imply
the existence of optimal noise. But there exists a sequence of
noise variables whose detection performance limit is optimal
when the optimal N-P SR noise does not exist. The second
SR result is a sufficient condition for SR noise benefits in N-P
signal detection. The third SR result is an algorithm that finds
near-optimal N-P SR noise from a finite set of noise real-
izations. This noise is nearly optimal if the detection and false
alarm probabilities in and in the actual noise space
are sufficiently close. An upper bound limits the number of
iterations that the algorithm needs to find near-optimal noise.
Section IV extends these results to more general statistical
decision problems that have one inequality constraint on the
average cost.

These SR results extend and correct prior work in “detector
randomization” or adding noise for improving the performance
of N-P signal detection. Tsitsiklis [40] explored the mechanism
of detection-strategy randomization for a finite set of detec-
tion strategies (operating points) in decentralized detection. He
showed that there exists a randomized detection strategy that
uses a convex or random combination of at most two existing
detection strategies and that gives the optimal N-P detection
performance. Such optimal detection strategies lie on the upper
boundary of the convex hull of the receiver operating character-
istic (ROC) curve. Scott [41] later used the same optimization
principle in classification systems while Appadwedula [42] used
it for energy-efficient detection in sensor networks. Then Chen
et al. [33] used a fixed detector structure: they injected indepen-
dent noise in the received signal to obtain a proper random com-
bination of operating points on the ROC curve for a given sub-
optimal detector. They showed that the optimal N-P SR noise
for suboptimal detectors randomizes no more than two noise
realizations.

But Chen et al. [33] assumed that the convex hull of the
set of ROC curve operating points always contains its
boundary and thus that the convex hull is closed. This is
not true in general. The topological problem is that the convex
hull need not be closed if is not compact [43]: the convex

1053-587X/$25.00 © 2009 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 23:25 from IEEE Xplore.  Restrictions apply.



1656 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

Fig. 1. SR noise benefits in suboptimal Neyman–Pearson signal detection. (a) The thin solid line shows the probability density function (pdf) � of signal �
under the normal hypothesis � � � � ���� �� while the dashed line shows the pdf � of � under the alternative normal hypothesis � � � � ���� ��. The
one-sample optimal detection scheme requires the two thresholds � � ����	 and � � ��
��. It rejects � if � � � � � � for the test significance or preset
false-alarm probability � � ����. The thick vertical solid line shows the best single threshold � � 	��� if the detector cannot use two thresholds due to resource
limits or some design constraint. The respective suboptimal detector rejects � if � 	 �. (b) The solid line shows the monotonic but nonconcave ROC curve

 � ��� ���� � ���� � � � �� of the suboptimal detector for different realizations � of the additive noise � in � . Here � ��� � ������ �

�
�� and

� ��� � ������ �� �� for the standard normal cumulative distribution function �. The detector operates at point � � �� ���� � ���� � ����������		�
on the ROC curve in the absence of noise. Nonconcavity of the ROC curve 
 between the points � � �� �� �� � �� �� and � � ��� �� allows the N-P SR effect
to occur. A convex or random combination of two operating points � and � � �� �� �, � �� �� gives a better detection performance (point �) than point � at
the same false-alarm level � ��� � � � ����. Such a random combination of operating points results from adding an independent discrete noise � with pdf
� ��� � ����� � � � ��� ������ � � to the random sample � where � � �� �� ������ �� �� � �� ��. Point � is on the upper boundary ��
of the ROC curve’s convex hull (dashed tangent line between � and �). So � is the supremum of detection performances that the random or convex combination of
operating points on the ROC can achieve such that � stays at 0.05. Point � is the convex combination of � and � but it is not realizable by adding only noise to the
sample � because point � � ����� is not on the ROC curve since there is no noise realization � � � such that �� ���� �

�
�� � � � �� ��� � �� ��.

So the N-P SR noise exists but the optimal N-P SR noise does not exist in the noise space � � �.

hull of is open if itself is open [44]. Chen et al. argued cor-
rectly in their proof of Theorem 3 in [33] when they concluded
that the “optimum pair can only exist on the boundary.” But
their later claim that “each on the boundary can be expressed
as the convex combination of only two elements of ” is not
true in general because may not include all of its boundary
points. The optimal N-P SR noise need not exist at all in a fixed
detector [45].

Fig. 1 shows a case where the N-P SR noise exists but where
the optimal N-P SR noise does not exist in the noise space

. Section V shows that the optimal SR noise does
exist if we restrict the noise space to a compact interval such
as . The algorithm finds nearly optimal N-P SR noise
realizations from a discretized set of noise realizations

in 17 iterations. Section V also shows that the
detection performance of the maximum a posteriori (MAP) re-
ceiver can sometimes benefit from signal-power randomization
in an average-power-constrained antipodal signal transmitter if
the channel noise pdf is multimodal. We assume that the trans-
mitter transmits equiprobable antipodal signals with

and that the additive channel noise has a
symmetric bimodal Gaussian-mixture probability density. Then
the respective error probability of the optimal MAP receiver is
nonconvex. So the transmitter can improve the detection per-
formance by time-sharing or randomizing between two power
levels for some values of the constraining maximum average
power. The algorithm finds a near-optimal signal power ran-
domization from a discretized subset of signal-strength real-
izations . The algorithm finds this

signal-power distribution in just 13 iterations. The next four sec-
tions present and illustrate the formal SR results. All examples
use single samples in statistical decision making but the results
still hold for multiple samples.

II. OPTIMAL NOISE DENSITIES FOR NEYMAN–PEARSON

SIGNAL DETECTION

We now derive two theorems that fully characterize the op-
timal noise probability densities for Neyman–Pearson signal de-
tection. Then we give a sufficient condition for SR noise benefits
in N-P signal detection.

Consider a binary hypothesis test where we decide between
and

using an -dimensional noisy observation vector .
Here is the received signal vector,
is a noise vector with pdf , and is the noise space. The
noise vector can be random or a deterministic constant such
as when . Here and are the pdfs of
the signal under the hypotheses and . We need not
know the prior probabilities of the hypotheses . Then
we want to determine when the optimal additive noise
exists and gives the best achievable detection performance at
the significance level for the given detection strategy.

Define and as the respective probabilities of
correct detection and false detection (alarm) when the noise
realization is . Define and

as the respective probabili-
ties of detection and false alarm when the noise pdf is . Let

be the pdf of the optimal SR noise that we add to the
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received signal to maximize the probability of detection
while keeping . Let denote the set of all probability
density functions on . So we need to find

(1)

such that

(2)

(3)

(4)

Conditions (2) and (3) are general pdf properties while (1)
and (4) state the Neyman–Pearson criteria for the optimal SR
noise pdf . The conditional noise pdf obeys

if the noise random variable is inde-
pendent of the concurrent received signal random variable
and the hypotheses . Then the irrelevance theorem [38], [39]
implies that the optimal likelihood-ratio test based on the re-
ceived signal realization and noise realization is the same
as the optimal likelihood-ratio test based on only . So the op-
timal detector can always ignore the noise realization without
affecting its detection performance. This implies that an N-P
SR noise benefit will not occur for the noise if the receiver
uses the optimal likelihood-ratio test based on . But computing
optimal likelihood-ratio thresholds is not simple for many non-
Gaussian noise types [46], [47]. We may also need multiple
thresholds to partition the test-statistic sample space into accep-
tance and rejection regions if the likelihood ratio is not a mono-
tone function of the test statistic. So some detection systems use
suboptimal tests if they have special hardware resource limits or
if they constrain the number of detection thresholds [48], [49].
Then SR noise benefits may occur and so we may need to com-
pute the optimal or near-optimal SR noise pdf.

The primal-dual method [50], [51] directly solves the above
optimization problem (1)–(4) in the noise domain . This ap-
proach gives both the conditions for the existence of optimal SR
noise and the exact form of the optimal noise pdf. It also leads
to an algorithm that can find near-optimal SR noise if the detec-
tion probability on the noise space is sufficiently close to
its restriction to the discrete noise realizations .

The Lagrangian of the inequality-constrained optimization
problem (1)–(4) is

(5)

(6)

The Lagrange duality [50], [51] implies that

(7)

So solving the optimization problem equates to finding
and the pdf such that

(8)

The next two theorems give necessary and sufficient condi-
tions for the existence of the optimal N-P SR noise and for the
form of its pdf if it exists. Define first the sets

(9)

and

(10)

Assume so that always exists. Let ,
, and be the respective suprema of over

the sets , , and :

(11)

(12)

and

(13)

Define

(14)

and let , , and be the respective suprema of
over the sets , , and :

(15)

(16)

and

(17)

Define

(18)

and

(19)

Rewrite the Lagrangian (6) as

(20)

Then (8) becomes

(21)

(22)
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Equality (22) follows because

(23)

(24)

(25)

and because strict inequality in (23) implies that there exists an
such that

because of (24)-(25)

(26)

But this is a contradiction because the supremum of a set of
numbers cannot be less than any one of those numbers. The
definition (17) implies that . So
(21)–(22) reduces to

(27)

Theorem 1a) below gives necessary and sufficient conditions
for the existence of optimal SR noise. It also gives the exact
form of the optimal N-P SR noise pdf if it exists when

. Theorem 2 likewise gives necessary and
sufficient conditions for the existence of when

. The proofs are in the Appendix.

Theorem 1:
a) Suppose that and that . Then

(28)

is an optimal SR noise pdf for Neyman–Pearson detection for
some and . The Neyman–Pearson
optimal SR noise does not exist for the given test level if

. But there exists a noise pdf sequence of
the form (28) such that for all and such that

(29)

b) Suppose that . Then if
the Neyman–Pearson optimal SR noise pdf exists.The
optimal noise pdf in Theorem 1a) is not unique if contains
more than one noise realization.

Theorem 2:
Suppose that . Then a)–d) hold:
a) There exists such that

and for
any .

b) Suppose the noise pdf satisfies
and . Then is a Neyman–Pearson op-

timal noise pdf. So is the optimal N-P SR detection prob-
ability .

c) Suppose that there exist and such that
. Then

(30)

is the optimal Neyman–Pearson SR noise pdf if
and if

(31)

d) Neyman–Pearson optimal SR noise does not exist if c) does
not hold. But there does exist a noise pdf sequence of
the form (30)–(31) such that

(32)

The optimal noise pdf is not unique if more than one pair of
noise realizations satisfy Theorem 2c).

The optimal randomization in (30)–(31) of two noise realiza-
tions resembles the optimal “minimax” randomization of pure
strategies in finite zero-sum games [52]–[54]. But the noise re-
sult differs because the minimax optimization does not impose
inequality constraints on the expected payoff.

Theorem 2 also implies the following necessary conditions
for the optimal N-P SR noise.

Corollary 1:
Suppose that and that and are

differentiable in the interior of the noise space .
a) Suppose that is an optimal N-P SR noise pdf of the

form (30)–(31) in Theorem 2c) and that and of (30)–(31)
are the interior points of . Then and satisfy

(33)

(34)

(35)

for some .
b) Suppose further that for each at most one solution

of in is a global maximum of
. Then is the optimal

N-P SR noise pdf if such a solution exists in . There is
otherwise no optimal N-P SR noise in the interior of .

Equalities (33)–(35) are necessary but not sufficient because
the noise realizations and that satisfy (34)–(35) need not
be global maxima. They need not be in and even if
they are global maxima. So (33)–(35) may not help find the
optimal SR noise. But Corollary 1b) shows that these necessary
conditions can suggest when optimal SR noise does not exist.
Section V-A applies Corollary 1b) to a hypothesis test between
two Gaussian densities.

Theorem 3 gives two sufficient conditions to detect an N-P
SR noise benefit in detectors that use a single noisy observation

to decide between and .

Theorem 3:
Let the detection and false-alarm probabilities and be

real-valued functions that are differentiable in a neighborhood
of 0. Suppose that and exist and that

. Suppose also that does not have a local minimum at 0
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and that does not have a local maximum at 0. Then an N-P
SR noise exists if

(36)

or if .

Theorem 3 implies the following corollary. It gives a suffi-
cient condition for a SR noise benefit in N-P signal detectors if
they partition the real line into acceptance and rejection inter-
vals and if they use a single noisy observation to decide
between and .

Corollary 2:
Suppose that the thresholds partition

the real line into acceptance and rejection regions and that
. Suppose also that the hypothesized pdfs are

differentiable at all the thresholds in . Define if
is a left endpoint of any rejection interval. Else let .
Then additive noise can improve the N-P detection of such a
detector if does not have a local minimum at 0, if does
not have local maximum at 0, and if

(37)

or .

The inequality (37) holds because the hypotheses of Corol-
lary 2 imply that

and

in (36).

III. N-P SR NOISE FINDING ALGORITHM

This section presents an algorithm for finding a near-optimal
SR noise density. Theorems 1 and 2 give the exact form for the
optimal SR noise pdf. But such a noise pdf may not be easy to
find in a given noise space . So we present an algorithm that
uses Theorems 1 and 2 and successive approximations to find
a near-optimal SR noise from a finite set of noise realizations

.
The algorithm takes as input , , in (9)–(19), and the

respective detection and false alarm probabilities and
in . The algorithm first searches for a constant noise from
the set if the inequality holds. The algo-
rithm otherwise finds a number at each iteration such that

and this gives
in at most iterations.

Then the algorithm defines the noise as the random com-
bination of and so that

, , and
.
Theorem 4a) below shows that for all the algorithm

finds an SR noise from in at most
iterations such that . Here

is the optimal N-P SR noise in and is the pdf of .
Theorem 4b) shows that
if for each there exists an so that

(38)

and

(39)

and if is the optimal N-P SR noise in with pdf .
Thus the algorithm will find a near-optimal noise for any
small positive if we choose such that is sufficiently small.

SR Noise-Finding Algorithm

Let
Let
Let
Let
Let
If

for any
Else

Let and
Let
Let
Let and
Let and

While and
Let
Let
Let
Let and

If
Let

Else
Let

End If
Let

End While
If

Let

Let

Let
Let

Else
Let

End If

where ,
,

and
End If
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Theorem 4:
a) Pick any . Then the above algorithm finds an N-P SR

noise from in at most iterations
so that

(40)

and

(41)

b) The suboptimal detection performance with noise is at
most less than the optimal SR detection with noise
if satisfies (38)–(39)

(42)

We next show that the noise-finding algorithm is much
faster than exhaustive search if for large
number of noise realizations. Suppose that the number of
elements in the discretized sets , , and are re-
spectively , , and . Then Theorem 2c) implies that
exhaustive search needs to consider all noise realization
pairs and find the pair that corre-
sponds to the maximal value of
where to find the
optimal noise in . Thus exhaustive search needs to
find the maximum from the set of elements. But
the algorithm first finds the maximum from the smaller
set of only elements and from the smaller set of only

elements to find the respective values of and
. The algorithm next finds the minimum from the

set of
only elements and finds the maximum from the set

of only elements to
get the respective values of and at each iteration

. Then it finds the maximum from
the set of elements and from the set of elements
during the last iteration if needed. Theorem 4a) shows that
the algorithm finds the near-optimal noise or random-
ization in just iterations such that

. So the algorithm is faster than
exhaustive search even for very small values of if both
and are large. The two applications in Section V confirm that
the noise-finding algorithm requires fewer iterations than the
upper-bound number of iterations .

IV. NOISE BENEFITS IN INEQUALITY-CONSTRAINED

STATISTICAL DECISION PROBLEMS

We show that randomization and noise benefits extend
beyond Neyman–Pearson signal detection. Researchers have
found randomization benefits in inequality-constrained sta-
tistical decisions such as average-power-constrained signal
transmission and jamming strategies [55] as well as in pricing
and scheduling for a network access point that maximizes the
time-average profit subject to an average-transmission-rate
constraint [56]. Azizoglu [55] showed that the optimal channel
switching strategy for an average-power-constrained trans-
mitter time-shares between at most two channels and power

levels to minimize the receiver-end error probability in mul-
tiple additive noise channels. Huang and Neely [56] studied
a pricing and transmission scheduling problem for a network
access point to maximize the time-average profit. They showed
that randomization of at most two business-price tuples suffices
for the access point to achieve its optimal time-average profit
under the average-transmission-rate constraint. These exam-
ples are all special cases of noise benefits in expected payoff
maximization in statistical decision problems that have one
inequality constraint on the expected cost.

We now extend the previous results to a broad class of ex-
pected payoff maximization problems subject to an inequality-
constrained expected cost such that the payoff and cost are real-
valued and bounded nonnegative Borel-measurable functions
on the noise space . Let be the payoff function
and be the cost function. We want to maximize the average
payoff subject to the average
cost constraint . Define
the noise as SR noise if its addition improves the expected
payoff while the expected cost stays at
or below a preset maximum expected cost . Suppose that the
respective cost and payoff in the absence of noise are
and . Then and hold
if is SR noise. So we want to find the optimal SR noise
such that for any other SR
noise and such that .

Theorems 1–4 hold if we replace , , and in (9)–(42)
with the respective real-valued bounded nonnegative payoff
function , cost function , and the preset maximum expected
cost . Theorem 4 holds with if
bounds both and . So the SR noise-finding algorithm can
find a near-optimal SR noise that improves the expected
payoff in statistical decisions with one inequality constraint on
the expected cost if we choose a small enough and a set of
noise realizations such that is sufficiently small in (38).
We omit the proofs of the above statements because they are
substantially the same as the proofs of Theorems 1–4 in the
Appendix but with minor notational changes. The next section
applies the algorithm to find a near-optimal signal power ran-
domization for a power-constrained antipodal signal transmitter
that improves the MAP detection in Gaussian-mixture noise.

V. APPLICATIONS OF THE SR NOISE-FINDING ALGORITHM

This section presents two applications of the SR noise-finding
algorithm. The first application finds a near-optimal SR noise for
a suboptimal one-sample Neyman–Pearson hypothesis test be-
tween two Gaussian distributions. The second application gives
a near-optimal signal power randomization for a power-con-
strained antipodal signal transmitter in additive Gaussian-mix-
ture channel noise where the receiver uses optimal MAP signal
detection.

A. Near-Optimal SR Noise for a Suboptimal One-Sample
Neyman–Pearson Hypothesis Test of Variance

Consider a hypothesis test between two Gaussian densi-
ties versus

where we want to decide between and
using only a single observation of at the significance

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 23:25 from IEEE Xplore.  Restrictions apply.



PATEL AND KOSKO: OPTIMAL NOISE BENEFITS IN N–P AND INEQUALITY-CONSTRAINED STATISTICAL SIGNAL DETECTION 1661

level . Fig. 1(a) shows both and . Note that
the likelihood ratio is not
monotonic. So the optimal Neyman–Pearson test function
requires the two thresholds and for the
optimal decision. It rejects if and if the test
significance or preset false-alarm probability is . The
optimal N-P detection probability is 0.11.

Suppose that the detection system can use only one threshold
due to resource limits or some design constraint. Such a sub-

optimal detector must reject when . Then
for . The noiseless detection probability
is . Here and

for the standard normal cumula-
tive distribution function . Then
inequality (37) of Corollary 2 becomes . So

satisfies this sufficient condition. So there exists ad-
ditive SR noise that improves the detection performance of
the suboptimal detector. But the existence of this SR noise
does not itself imply the existence of optimal SR noise if
the noise space is . Note that and are mono-
tonic increasing on and .
Then Theorem 1b) implies that the corresponding false-alarm
probability is if the optimal N-P SR noise exists.
Suppose that the optimal N-P SR noise exists. Then the neces-
sary condition of Corollary 1a) becomes

where and are the pdfs defined
above. Then there exists such that for all

and for all
if maximizes . Then at most one
solution of is a global maximum of

for each . So Corollary 1b)
implies that optimal N-P SR noise does not exist if the noise
space is . But the hypothesis of Theorem 2c) does hold if we
restrict the noise space to a compact interval (say ) be-
cause and are continuous functions of .

We next apply the algorithm to find near optimal noise in
for . Consider the discretized set

of noise realizations starting from -3 up to 3 with an increment
of . satisfies (38)–(39)
for because 0.4 bounds and . Fig. 2 plots

before the first iteration
where and after the 17th iteration .

The noise-finding algorithm finds the value
in just iterations such that

. Note that ,
at and that , at

. Then

(43)

(44)

is the pdf of a near-optimal N-P additive SR noise because
and because Theorem 4b) implies that the

detection probability for the optimal N-P SR noise
in will be at most more

than . So the algorithm finds a near-optimal N-P SR
noise that gives a 177% increase in the detection probability of

Fig. 2. Finding near-optimal Neyman–Pearson SR noise. The two curves plot
����� ����� � � ���� � ������ ���� � �� before the first iteration �� � ��
and after the 17th iteration �� � �� where ���� � �. The detection probability
is � ��� � ����		 in the absence of additive noise. The noise-finding algo-
rithm finds a value of ���
� � ������ in 17 iterations such that �	 ����
���
	 ����
��� 
 � � 	 . Note that ���� � ���
�� � 	 ����
�� at �� �
�� � � and ���� � ���
�� � 	 ����
�� at �� � 	����� � � . Then
(43)–(44) give the pdf of a near-optimal N-P SR noise � and � �� � �
������. So the N-P SR noise � increases the detection probability � 177%
from 0.0322 to 0.0894.

the single-threshold suboptimal test from 0.0322 to 0.0894. The
noise-enhanced detection probability 0.0894 is fairly close to
the optimal N-P detection probability 0.11.

B. Near-Optimal Signal Power Randomization for a
Power-Constrained Signal Transmitter

The detection performance of a MAP receiver can sometimes
benefit from signal power randomization or time-sharing in an
average-power-constrained antipodal signal transmitter if the
channel noise pdf is multimodal. The noise-finding algorithm
finds a near-optimal signal power distribution or randomization
in an average-power-constrained transmitter that improves the
MAP receiver’s detection performance.

Consider a signal detection hypothesis test where the
transmitter transmits antipodal signals
where and both signal values are
equally likely: versus
and . Suppose
that the transmitter can use at most 4.75 units of ex-
pected power and that the receiver decides be-
tween and using a single noisy observation

. Here is an additive symmetric Gaussian-mix-
ture channel noise where the signal probability density is

at the receiver under the hypothesis and
under the

hypothesis . Such Gaussian-mixture channel noise can
occur due to co-channel interference in communication sys-
tems [57]–[59]. The receiver is optimal and hence it uses
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maximum a posteriori (MAP) signal detection to maximize the
probability of correct decision. Then the receiver rejects if
the likelihood ratio obeys .
We assume that the transmitter can time-share or randomize
between the signal power levels so that the receiver knows the
signal power value but does not know whether the signal is

or .
Let be the probability density of the transmitter’s signal

strength . Define as the probability of correct de-
cision and let be the average signal power when the
signal-strength pdf is . Then we want to find such that

for any such that
. We can view as the average payoff

and view as the average cost with the max-
imum average cost . So we can apply the SR noise
finding algorithm to find a near-optimal signal-power pdf
from a discretized set of signal-power realizations. We use

and . Then satisfies con-
ditions (38)–(39) for because 0.2 bounds and .
Both and have upper bound . So the iteration
upper bound is . The generaliza-
tion of Theorem 3 to this example gives the sufficient condition

(45)

for the SR noise benefits if the maximal average signal power
is .

Fig. 3 plots the correct-decision probability versus the
signal power . The randomized signal power is optimal be-
cause the graph is nonconcave. Azizoglu [55] proved that the
plot of versus is concave if the channel noise has fi-
nite variance and if it has a unimodal pdf that is continuously
differentiable at every point except the mode. The nonconcavity
of the graph in Fig. 3 arises from the bimodal Gaussian-mix-
ture pdf even though the bimodality of the channel noise pdf
does not itself give a nonconcave plot of versus . The
probability of correct decision is 0.7855 (point ) if the
transmitter uses a constant power (a constant signal
strength ). The dashed tangent line shows that we
can achieve a better detection performance using the same av-
erage signal power . The probability of correct
decision is 0.8421 (point ) if the transmitter time-shares
or randomizes appropriately between the signal power levels

(point ) and (point ). The suffi-
cient condition (45) does not hold for because the
plot of versus is locally concave at the constant-power
operating point at . So
the noise benefit occurs even when the sufficient condition (45)
does not hold.

The algorithm finds the SR noise or signal-strength random-
ization with pdf

(46)

(47)

in just iterations. So the transmitter
should time-share or randomize between the antipodal signals

Fig. 3. SR noise (signal-strength randomization) benefits in optimal antipodal
signal detection. Signal power randomization in an average-power-constrained
antipodal transmitter improves the detection performance of the optimal re-
ceiver. The transmitter transmits antipodal signals � � ���� �� such that
��� � � � � ���� and such that both signals values are equally likely: � �
� � �� versus � � � � � and � �� � � � ���� � � ��� � � �� �.
The receiver receives the noisy observation 	 � � � 
 . 
 is symmetric
Gaussian-mixture channel noise. The signal probability density is � ��� �
	


�

�� �	


�

�� at the receiver under the hy-

pothesis� and is � ��� � 	

�

�� �	


�

��

under the hypothesis � . The receiver uses the single noisy observation 	
and the optimal MAP decision rule to decide between � and � . The solid
line shows the nonmonotonic and nonconcave plot of the probability of cor-
rect decision � versus the signal power � . Nonconcavity of the plot be-
tween the points � and � allows the SR effect to occur. The respective proba-
bility of correct decision � is 0.7855 (point �) if the transmitter uses a con-
stant power � � ���� (a constant signal strength � � 
�	���). The dashed
tangent line shows that we can achieve a better probability of correct decision
(0.8421 at point �) at the same average signal power��� � � ���� if the trans-
mitter time-shares or randomizes appropriately between the signal power levels
� � 	���� (point �) and � � ������ (point �).

and with respective proba-
bilities and . This signal-strength
randomization pdf is nearly optimal because Theorem 4b)
implies that will be at most more
than for the optimal signal-strength ran-
domization or for the optimal SR noise in .
Thus the SR noise algorithm can find a near-optimal signal
power randomization that improves the average probability
of correct decision (from 0.7855 to 0.8421) over the constant
power signaling. Chapeau–Blondeau and Rousseau showed
related SR noise benefits in the optimal Bayesian detection of
a periodic square-wave signal in bimodal Gaussian-mixture
phase noise [60] and of a constant signal in additive bimodal
noise [61]. But they did not find either the optimal or near-op-
timal noise pdf as in (46)–(47) for inequality-constrained
optimal signal detection.

VI. CONCLUSION

Adding noise can sometimes benefit Neyman–Pearson statis-
tical signal detection. Theorems 1–3 give necessary and suffi-
cient conditions for optimal noise densities in such signal detec-
tion. The noise-finding algorithm finds near-optimal SR noise
from a finite set of noise realizations. An upper bound limits
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the number of iterations that the algorithm requires to find this
near-optimal noise. These results directly extend to the gen-
eral case of maximizing the expected payoff in statistical de-
cision making with an inequality constraint on the average cost.
Nor are the noise benefits limited to suboptimal signal detec-
tion. Noise or randomization can sometimes improve the perfor-
mance of even optimal MAP detectors. Adding such optimal or
near-optimal noise should benefit many other problems of signal
processing and communication. The general optimization struc-
ture should also lead to adaptive noise-finding algorithms.

APPENDIX

PROOFS OF THEOREMS AND COROLLARY 1

Theorem 1:
a) Suppose that and that . Then

(48)

is an optimal SR noise pdf for Neyman–Pearson detection for
some and . The Neyman–Pearson
optimal SR noise does not exist for the given test level if

. But there exists a noise pdf sequence of
the form (48) such that for all and such that

(49)

b) Suppose that . Then if
the Neyman–Pearson optimal SR noise pdf exists.

Proof:
Part a): Suppose that and that .

Then for all

(50)

(51)

and similarly . Then for all
if . The left-hand side of (27) becomes

(52)

because is a

nondecreasing function of

(53)

Thus (6), (8), and (53) imply that . So we need to find
the pdf such that

(54)

The definition of implies that
for any . Choose as the unit impulse at

. Then

(55)

(56)

So is the optimal SR noise pdf and hence

(57)

Suppose now that . Then
for all . Suppose that is the optimal SR noise pdf.
Then

(58)

(59)

because and

because

iff a.e. on

(60)

and the supremum definition of further imply
[62] that there exists a sequence of noise realizations
in such that

(61)

So there exists such that
and . Define a sequence of noise pdfs

. Then contradicts the optimality of
while for all and

(62)

Part b): Suppose that and that
. Suppose also that is the optimal SR noise pdf such that

and that for any other
noise pdf . The definition of implies that

if . Then because
and . Define

(63)

Then is a pdf because for all and
. So

(64)

(65)
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(66)

(67)

and

(68)

(69)

(70)

(71)

because . But contradicts
the optimality of . So if is the optimal SR
noise pdf and if .

Suppose now that but . The defi-
nitions of and imply that there exists an
such that because . Then

again contradicts the optimality of if we define as in
(63).
Theorem 2:

Suppose that . Then a)–d) hold:
a) There exists such that

and for
any .

b) Suppose the noise pdf satisfies
and . Then is a Neyman–Pearson op-

timal noise pdf. So is the optimal N-P SR detection prob-
ability .

c) Suppose that there exist and such that
. Then

(72)

is the optimal Neyman–Pearson SR noise pdf if
and if

(73)

d) Neyman–Pearson optimal SR noise does not exist if c) does
not hold. But there does exist a noise pdf sequence of
the form (72)–(73) such that

(74)

Proof:
Part a): Definitions (14)–(15) and are contin-

uous functions of . is further an unbounded and de-
creasing function of . But is a nondecreasing function
of because . So there exists such

that if . There likewise exists
such that if

because . Thus there
exists such that and

for any
.

Part b): Part a) above and (27) imply that

(75)
Let be a noise pdf such that and

. Then

(76)

(77)

(78)

by (75) (79)

So is the optimal SR noise pdf.
Part c): Suppose that there exist and

such that . Define

(80)

(81)

Then

(82)

(83)

(84)

(85)

and

(86)

(87)

(88)

(89)

(90)

Then (85), (90), and the result of Part b) imply that is an
optimal SR noise pdf. This optimal noise pdf is not unique if
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there exist more than one pair of noise realizations that satisfy
the hypothesis of Theorem 2c).

Part d): Define

(91)

and

(92)

Suppose that but . So there exists
such that but there does not exist
such that . Then
for all by the definition of . Suppose is the
optimal SR noise pdf with . Then

(93)

(94)

(95)

(96)

because for all and because

iff a.e. on

so

(97)

The supremum definition of and imply
[62] that there exists a sequence of noise realizations
in such that

(98)

Now define a sequence of pdfs

(99)

(100)

Then for all and

(101)

(102)

(103)

(104)

(105)

(106)

Hence and there exists a positive integer such
that for all . This contradicts the
optimality of . So optimal SR noise does not exist if
and . Similar arguments also prove the nonexistence of
optimal SR noise in the more general case when either
or .

Corollary 1:
Suppose that and that and are

differentiable in the interior of the noise space .
a) Suppose that is an optimal N-P SR noise pdf of the

form (72)–(73) in Theorem 2c) and that and of (72)–(73)
are the interior points of . Then and satisfy

(107)

(108)

(109)

for some .
b) Suppose further that for each at most one solution

of in is a global maximum of
. Then is the optimal

N-P SR noise pdf if such a solution exists in . There is
otherwise no optimal N-P SR noise in the interior of .

Proof:
Part a): Say that is an optimal SR noise pdf of the form

(72)–(73) in Theorem 2c). Then =
for some and so (107) follows. The definition of
implies that and are maximal points of for .
So and satisfy (108)–(109) for if and are
differentiable in the interior of and if and of (72)–(73)
are the interior points of .

Part b): Theorem 2a) implies that there exists such
that . Now either there exist

and such that
or else the optimal SR noise does not exist

by Theorem 2d). The former case implies that and are
solutions of . But the hypothesis
implies that at most one solution of
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in is a global maximum of for
each . So = (say) . Then

and is the optimal noise
pdf by Theorem 2c).

Theorem 3:
Let the detection and false-alarm probabilities and be

real-valued functions that are differentiable in a neighborhood
of 0. Suppose that and exist and that

. Suppose also that does not have a local minimum at 0
and that does not have a local maximum at 0. Then an N-P
SR noise exists if

(110)

or if .

Proof:
The local version of Taylor’s theorem [63] gives

(111)

where as . Likewise

(112)

(113)

(114)

where as for 2, 3, and 4.
Now define

(115)

Suppose first that both and increase at 0. Hence
because of (110). Then

(111)–(115) imply that there exists such that for all

(116)

and hence

(117)

Rewrite the above inequality as

(118)

This is equivalent to

(119)

Then

(120)

for all because of (111)–(115). Rewrite (120) as

(121)

This inequality implies that

(122)

(123)

is an SR noise pdf.
Suppose now that both and decrease at 0. Hence

and there exists such
that for all

(124)

Then similar arguments show that (122)–(123) again give an SR
noise pdf.

All other cases obey either and
or and because

does not have a local minimum at 0 and because does
not have a local maximum at 0 by hypothesis. So either

or gives an SR noise pdf.

Theorem 4:
a) Pick any . Then the above algorithm finds an N-P SR

noise from in at most iterations
so that

(125)

(126)
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b) The suboptimal detection performance with noise is at
most less than the optimal SR detection with noise
if satisfies (38)–(39):

(127)

Proof:
Part a): The set is nonempty and finite because the noise

realization vector is finite. Suppose that .
Then Theorem 1a) implies that the optimal noise in has
the form for any . The algorithm
finds such noise if .

Suppose now that . Then there exists
such that by Theorem 2a). Also

there exist and such that
because is finite.

Then Theorem 2c) implies that the optimal SR noise in
has the pdf of the form (72). by Theorem
1b) while Theorem 2b) implies that . The

algorithm finds an SR noise from and its pdf is of
the form in the algorithm. This pdf satisfies (126) with
equality. So we need to show only that satisfies (125).

We first show that the SR noise pdf satisfies (125)
if and
for some . Theorem 2a) implies that if

and if
. So suppose first that and

. Let and such that
and . Note that

. Then

(128)

(129)

(130)

(131)

because

and

(132)

because

(133)

Similar arguments show that if
and . So we need show only

that and for
some .

We now show that for all . This
implies that for where

. We then prove that for
.

We use mathematical induction in to prove that
for all .

Basis Step : The definition of gives
where , ,

and . Both and are between 0 and 2 by
hypothesis. So . Then

. Theorem 2a) im-
plies that is between and

. Then . And
holds in the algorithm because

. Hence
.

Induction Hypothesis : Suppose that
. Then the definition of implies that

. Suppose also that lies between and .
Then . Note that
where

in the algorithm. So .

Induction Step : lies between
and by Theorem 2a). Suppose that

. also lies between and
because

by definition. So lies between
, and and

where , .
The algorithm defines and

, . Then
and lies between and

.

Write
. The last inequality

follows from the induction hypothesis while the first inequality
follows from the definition of and the fact that

. Then

because
and

. This proves the induction
claim because lies
between and . Similar arguments prove
the induction claim when .

We have so far proved that for
. But this need not imply that

. The algorithm finds
such that where

if
. This implies that

because lies between
and by Theorem 2a) and

because .
Part b): The optimal SR noise pdf is of the form

(72)–(73) and so
. There exist and in that satisfy (38)–(39) by hypoth-

esis. Define as a noise restricted to with pdf

(134)
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Then

(135)

because of

because of (136)

and

(137)

(138)

because of (38)

because of (134) (139)

Inequalities (136) and (139) and the fact that is restricted to
imply that

(140)

if is the optimal SR noise restricted to such that
. Then inequality (127) follows from (140)

and the result of Part a).
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