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Abstract

In this paper, we introduce the centroid and generalized centroid of a type-2 fuzzy set
(both of which are essential for implementing a type-2 fuzzy logic system), and explain
how to compute them. For practical use, we show how to compute the centroid of
interval and Gaussian type-2 fuzzy sets. An exact computation procedure is provided
for an interval type-2 set, whereas an approximation is provided for both interval and
Gaussian type-2 sets. Examples are given that compare the exact computational results
with the approximate results. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

We may view the output of a type-1 fuzzy logic system (FLS) — the de-
fuzzified output — as analogous (not equal!) to the mean of a probability
density function. Just as variance provides a measure of dispersion about the
mean, and is always used to capture more about probabilistic uncertainty in
practical statistical-based designs, a FLS also needs some measure of disper-
sion to capture more about its uncertainties than just a single number. Type-2
fuzzy logic provides this measure of dispersion, and seems to be as fundamental
to the design of systems that include linguistic and/or numerical uncertainties,
that translate into rule or input uncertainties, as variance is to the mean.
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The concept of a type-2 fuzzy set (or type-2 set, for short) was introduced by
Zadeh [24] as an extension of the concept of an ordinary fuzzy set [henceforth
called a type-1 fuzzy set (or type-1 set, for short)]. A type-2 fuzzy set is char-
acterized by a fuzzy membership function, i.e., the membership value for each
element of this set is a fuzzy set in [0, 1], unlike a type-1 set where the mem-
bership value is a crisp number in [0, 1].

Type-2 fuzzy sets allow us to handle linguistic uncertainties (as typified by
the adage “words can mean different things to different people [18]) as well as
numerical uncertainties. A fuzzy relation of higher type (e.g., type-2) has been
regarded as one way to increase the fuzziness of a relation, and, according to
Hisdal [6], “increased fuzziness in a description means increased ability to
handle inexact information in a logically correct manner”’. According to John
[7], “Type-2 fuzzy sets allow for linguistic grades of membership, thus assisting
in knowledge representation, and they also offer improvement on inferencing
with type-1 sets”.

Mizumoto and Tanaka [19] have studied the set theoretic operations of
type-2 sets, properties of membership grades of such sets, and, have ex-
amined the operations of algebraic product and algebraic sum for them [20].
Nieminen [21] has provided more details about algebraic structure of type-2
sets. Dubois and Prade [5] and Kaufmann and Gupta [15] have discussed
the join and meet operations between fuzzy numbers under minimum
t-norm. Dubois and Prade [3-5] have also discussed fuzzy valued logic and
have given a formula for the composition of type-2 relations as an extension
of the type-1 sup-star composition, but this formula is only for minimum
t-norm. Karnik and Mendel [11,13] have provided a general formula for the
extended sup-star composition of type-2 relations. Type-2 fuzzy sets
have already been used in a number of applications, including decision
making [1,23], solving fuzzy relation equations [22], and pre-processing of
data [8].

The output of a type-1 fuzzy logic system is a type-1 fuzzy set. This set is
usually defuzzified and, as is well known, many of the most useful defuzzifi-
cation methods involve a centroid calculation [17,2]. Recently, a type-2 FLS
[10,11,14] has been developed, and its output is a type-2 fuzzy set. A major
calculation in a type-2 FLS is type-reduction [12], which is an extension (using
the Extension Principle [24]) of a type-1 defuzzification procedure. Conse-
quently, in order to implement a type-2 FLS, one needs algorithms for com-
puting the centroid of a type-2 fuzzy set.

We believe that the concept of a centroid of a type-2 fuzzy set is new, and
present general results for it in Section 2, including a way to approximate its
calculation, since its calculation is, in general, quite complex. We focus on the
centroid of interval and Gaussian type-2 fuzzy sets in Sections 3 and 4, re-
spectively, because these type-2 sets are quite useful in practical applications.
Conclusions are given in Section 5.
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In the sequel, we use the following notation and terminology. 4 is a type-1
fuzzy set, and the membership grade (a synonym for the degree of membership)
of x e X in A4 is u,(x), which is a crisp number in [0, 1]. A type-2 fuzzy set,
denoted 4, is characterized by a type-2 membership function u i(x,u), where
xeXandueJ, C[0,1],ie, 4= {((x,u), uix,u)| ¥x € X, Vu € J, CJ[0,1]},
in which 0 < w;(x,u) <1. At each value of x, say x = x/, the 2D plane whose
axes are u and u(x'u) is called a vertical slice of u;(x,u). A secondary mem-
bership function is a vertical slice of pi(x,u). It is pi(x = x',u) for x' € X and
VueJo C0,1], ie., pilx=xu)Eui(x)= [, fv(u)/u, where Jo C[0,1].
Because Vx' € X, we drop the prime notation on yu;(x'), and refer to u;(x) as a
secondary membership function; it is a type-1 fuzzy set, which we also refer to
as a secondary set. Based on the concept of secondary sets, we can reinterpret a
type-2 fuzzy set as the union of all secondary sets, i.e., we can re-express A in a
vertical-slice manner, as A = {(x, u;(x))| Vx € X}. The domain of a secondary
membership function is called the primary membership of x; J, is the primary
membership of x, where J, C [0, 1] for Vx € X. The amplitude of a secondary
membership function is called a secondary grade; f.(u) is a secondary grade.
Assume that each of the secondary membership functions of a type-2 fuzzy set
has only one secondary grade that equals 1. A principal membership function is
the union of all such points at which this occurs, i.e., fincipa(X) = [.cy /X,
where f,(u) = 1, and is associated with a type-1 fuzzy set.

When the secondary membership functions (MFs) of a type-2 fuzzy set are
type-1 Gaussian MFs, we call the type-2 fuzzy set a Gaussian type-2 set (re-
gardless of the shape of the principal MF). When the secondary MFs are type-1
interval sets, we call the type-2 set an interval type-2 set. Finally, M denotes meet
operation, and, LI denotes join operation, where meet and join are defined and
explained in great detail in [11,13].

Fig. 1 shows an example of a Gaussian type-2 set, where the secondary
MF for every point is a Gaussian type-1 set contained in [0, 1]. Intensity of
the shading is approximately proportional to secondary grades. Darker areas
indicate larger secondary grades. Fig. 2 shows an interval type-2 set, where
the secondary MF for every point is a crisp set, the domain of which is an
interval contained in [0, 1]. Because all the secondary grades are unity, the
shading is uniform all over. In the sequel, we represent an interval set just by
its domain interval, which can be represented by its left and right end-points
as [/,7], or by its center and spread as [c —s,c + 5], where ¢ = (I +r)/2 and
s=(r—1)/2.

2. Centroid of a type-2 FS: general results

The centroid of a type-1 set A, whose domain, x € X, is discretized into N
points, xi,x,,...,Xy, IS given as
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Fig. 1. (a) Pictorial representation of a Gaussian type-2 set. The standard deviations of the sec-
ondary Gaussians decrease by design, as x moves away from 3. The principal membership function,
is indicated with a thick line; it is a Gaussian because of the way the set is constructed. The flat
portion from about 2.5 to 3.5 appears because primary memberships cannot be greater than 1 and
so the Gaussians have to be “clipped”. The primary membership corresponding to x = 4 is also
shown. The secondary membership function at x = 4 is shown in (b), and is also Gaussian.

cy = 217\[1 xl':uA(xi) ) (1)
Dint M (%)

Similarly, the centroid of a type-2 set 4, 4 = {(x, u(x))| x € X}, whose x-do-

main is discretized into N points, so that 4 = 3V [ . S (u)/u]/x;, can be
defined using the Extension Principle as follows:

Cim [ [ ok Xl @
4 01€Jy, Oye " 1 A Zf\;l 9!’ .
C, is a type-1 fuzzy set. Let 0 = [0,...,0y]",

)
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Fig. 2. (a) An interval type-2 set. The primary membership at x = 0.65 is also shown. The sec-
ondary membership function at x = 0.65 is shown in (b), and equals 1, i.e., the secondary MF is an
interval type-1 set.
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The computation of C; involves computing the tuple (a,b) many times. Sup-
pose, for example, (a,b) is computed o times; then, we can view the compu-
tation of C; as the computation of the o tuples (ay,b;), (a2, b,), . .., (ay, by).

Eq. (2) can also be described in words as follows. To find the centroid, we
consider every possible combination {6, ...,0y} such that 0; € J,.. For every
such combination, we perform the type-1 centroid calculation in (1) by using 6;
in place of u(x;); and, to each point in the centroid, we assign a membership
grade equal to the -norm of the membership grades of the 0; in the J,,. If more
than one combination of 6; gives us the same point in the centroid, we keep the
one with the largest membership grade.
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C; can also be expressed as

ci- [ / L, H0)al0) (5)

If two or more combinations of vector 6 give the same point in the centroid set,
a(0), we keep the one with the largest value of b(0).

Every combination {0,...,0y} can be thought to form the membership
function of some type-1 set A’ which has the same domain as 4. We call 4’ an
embedded type-1 set in A. The centroid C;is a type-1 set whose elements are the
centroids of all the embedded type-1 sets in 4. The membership of an em-
bedded set centroid in C; is calculated as the -norm of the secondary grades
corresponding to {0, ..., 0y} that make up that embedded set.

The sequence of computations needed to obtain C; is as follows:

1. Discretize the x-domain into N points, x|, ..., Xy.

2. Discretize each J,, (the primary memberships of x;) into a suitable number of
points, say M, (] =1,...,N).

Enumerate a11 the embedded sets; there will be H _ M; of them.

4. Compute the centr01d using (2), 1i.e., compute the o tuples

(a;, b)), i=1,2,. H/ | where a; and b; are given in (3) and (4), respec-

tively. In thlS case o = H

(98)

Observe that if the domain of A and/or p;(x) is continuous, the domain of
C; is also continuous. The number of all the embedded type-1 sets in 4, in
this case, is uncountable; therefore, the domains of 4 and each u(x) have to
be discretized for the calculation of C; (as explained in Section 2.1, we al-
ways use minimum #-norm for the centroid calculation of a type-2 set having
a continuous domain, even though we use product z-norm everywhere else).
In step 3 above, H M; can be very large even for small M; and N. If,
however, the secondary membershlp functions have a regular structure (e.g.,
interval or Gaussian sets), we can obtain the exact or approximate centroid
without having to do all the calculations. For interval secondary MFs, the
exact centroid can be obtained relatively easily, without performing com-
putations for all the combinations, by using the computational procedure
described in Section 3.1. For Gaussian and interval secondary MFs, under
certain conditions, described in Section 4, centroids can be computed
approximately.

2.1. Centroid computation using product t-norm

Calculation of the centroid of a type-2 set which has a continuous domain
and not all of whose secondary grades are unity, using product -norm, gives us
an unexpected result. In the following, we discuss the problem and suggest a
remedy.
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We concentrate on type-2 sets having a continuous domain whose secondary
membership functions are such that, for any domain point, only one primary
membership has a secondary grade equal to one. Let 4 be such a set. In the
discussion associated with (2), we assumed that the domain of 4 is discretized
into N points. The true centroid of A (assuming 4 has a continuous domain) is
the limit of C; in (2) as N — oo. When we use the product z-norm
limy oo 7Y, £ (0,) = limy o [T, £.(0)).

Let B be an embedded type-1 set in 4. The centroid of B is computed as

N
1 Xi X
cp = 217\,1 :uB( ) (6)
> it Mp(xi)
and the membership of ¢; in C; (denoted as puq(cp)] is
N
ueles) = [ £ (00, (7)
i1
where {0}, ..., 0y} are the primary memberships that make up the type-1 set B.

Also, let A denote the principal membership function of 4. Obviously,
tc(cy) = 1. Observe that:

1. limy _ » uc(cp) is non-zero only if B differs from A4 in at most a finite
number of points. For all other embedded sets B, the product of an infi-
nite number of quantities less than one will cause uc-(cz) to go to zero as
N — oo.

2. For any embedded set B, whose membership function differs from that of
A in only a finite number of points (i.e., when uz(x) # 1, (x), for only a finite
number of points x), ¢z = c¢4. This can be explained as follows. The (true)
centroid of B is the limit of (6) as N — oo, i.e., ¢y = [ xpp(x)dx/ [ pg(x)dx,
where x € B. Since 4 and B share the same domain (both are embedded sets in
A),x € A < x € B;and since y,(x) and p,(x) differ only in a finite number of
points, [ xuz(x)dx = [ xu,(x)dx and [ pg(x)dx = [ u,(x)dx; therefore,
Cp = Cy.

From these two observations, we can see that the only point having non-
zero membership in C; is equal to c4; and its membership grade is equal to the
supremum of the membership grades of all the embedded type-1 sets which
have the same centroid, which is equal to 1 (since p-(cs) = 1). In other words,
C;=1/cqy = cy, i.e., the centroid of 4 will be equal to a crisp number ... the
centroid of its principal membership function!

This problem occurs because, under the product fnorm, limy_,
TN fu(0) = limy o I, £+.(6;) = 0, unless only a finite number of f;,(0;) are
less than 1. The minimum z-norm does not cause such a problem. To avoid this
problem, we will always use the minimum t-norm to calculate the centroid of a
type-2 set having a continuous domain.
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2.2. Generalized centroid

The centroid of a type-1 fuzzy set, in (1), is a weighted average, of the
general form

S Wiz
y(Zl,'~~7ZN7W1,~~~,WN):1_\/7, (8)
Do Wi
where z; € R and w, € [0,1] for I = 1,... N. So far, we have only considered

the extension of (8) when w; becomes a type-1 set, because most type-1 de-
fuzzification methods fit this case. However, a recently defined center-of-sets
defuzzifier [11,14] requires both w; and z; to become type-1 sets; hence, we are
motivated to generalize the extension of (1) to (2) to the extension of (8). The
result of doing this is called a generalized centroid, which we denote as GC.

If each z; is replaced by a type-1 fuzzy set Z; C R with associated mem-
bership function i, (z;), and each w; is replaced by a type-1 fuzzy set W; C [0, 1]
with associated membership function iy, (w;), then the extension of (8) — the
generalized centroid —

wiz
Zl 1" l
GC = / / / / T 1yzl (z) % T 1y, (W)

71€Z) vEZy JwiEW wynEWN Zl IWI

)
where .7 and % both indicate the #-norm used ... product or minimum. Ob-
serve that GC is a type-1 fuzzy set. In this case, we let 0 =[z,...,zy,

Wi, ... ,wN]T and re-express a(0) and b(0) in (3) and (4), as

9) = ZW/Z[/ZW[ (10)

and

b(0) = *77:1:“2, (Zl)*f77:1/‘w(wl)- (11)

The sequence of computations needed to obtain GC is as follows:

1. Discretize the domain of each type-1 fuzzy set Z; into a suitable number of
points, say N; (I =1,2,...,N).

2. Discretize the domain of each type-1 fuzzy set ; into a suitable number of
points, say M; (/ =1,2,...,N).

3. Enumerate all the possible combinations 0 = [z, ...,zy, wy,. .. ,WN]T such
that z; € Z, and w; € W,. The total number of combinations will be
N M;N;
Hj:l JI

4. Compute the generalized centroid using (9), i.e., compute the « tuples
(ai, b)), i=1,2,. H?/:] M;N;, where a; and b; are given in (10) and (11), re-
spectively. In thls case o = vazl M;N;.
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2.3. Computational complexity

The centroid and generalized centroid have high computation complexity.
As described at the beginning of this section, the centroid Cy, is a collection of
the centroids of all embedded type-1 fuzzy sets. The centroid or generalized
centroid operations for each type-1 set can be processed in parallel. The
number of parallel processors depends on the sampling rates in the x-domain
and primary MF domain. The computations for « in (3) show the computa-
tional complexity in terms of multiplications, additions, and divisions; and, the
computations for b in (4) give the number of operations for f-norm. The
number of parallel processors equals the number of (a;, b;) tuples.

For the type-2 centroid, if the x-domain is sampled to N points, and each
primary MF is sampled to M; points, then there are N — 1 f-norm (minimum)
operations, N multiplications, 2(N — 1) additions and one division, and,
Hf’:IM,« parallel processors are required. A similar analysis applies to the
generalized centroid. Presently, parallel processing is not available for most
researchers, so the computational complexity of centroid and generalized
centroid computation is high. This motivates us to develop some approximate
results.

2.4. Approximate result

In this section, we present a result that lets us approximate the generalized
centroid of a type-2 fuzzy set as an affine combination of type-1 sets, provided
that the amount of type-2 uncertainty is small.

Theorem 2.1. Consider the generalized centroid in (9). If each Z; is a type-1 set
with support [c; — s;,¢; + s)], and if each W, is also a type-1 set with support
[h[ — A[,h] + Al], then

oSl em ()]

where
Z =2 —cp (13)
W, =W~ h, (14)
and
N
Y ELL (15)

ZIIV:1 hy ’
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provided that

N
V|
Z’Nzl <1 (16)
Zl:l hy

The approximation improves as Z],v:l 4,/ Z],v:l h; grows smaller, and the result is
exact when Z/,V:l A;=0,ie,when A;=0forl=1,...,N.

See Appendix B for the proof. Note that Theorem 2.1 is true regardless of
the specific nature of the Z;’s or W;’s. This theorem is important, because, in
general, it is much easier to compute the RHS of (12) than the RHS of (9). To
compute (12), we need to use the algebraic sum operation given in Theorem
A.1 or A.2 in Appendix A.

For the centroid of a type-2 fuzzy set, Z, = ¢;, so Z, = 0, and we obtain the
following.

Corollary 2.1. Consider the centroid in (2), when each J., is a type-1 set with
support [h; — Ay, h; + Aj; then,

ul X; — 4
Y (5 )+ (17)
where
g, =Jy —hi, (18)
and
N
Y ELL (19)
Zi:l hi
provided that
i
=<1 20
S >

We illustrate the application of Theorem 2.1 and Corollary 2.1 in Sections 3
and 4 below. In these sections we comment on the constraint in (16) (or (20)).

3. Centroid of an interval type-2 fuzzy set

In this section, we focus on an interval type-2 fuzzy set. We first present a
computational procedure that lets us compute the generalized centroid (which
is given by (9)) exactly, without actually having to consider the centroids of all
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the embedded type-1 sets. Then, we present an approximate result that gives an
expression for the generalized centroid if the amount of type-2 uncertainty is
small in a sense to be defined.

Consider the generalized centroid in (9). If each Z; and W, (I =1,...,N) is
an interval type-1 set, then, using the fact that u, (z;) = py, (w;) = 1, (9) can be
rewritten as

ZN Wizj
GC:/ / / / 1 %Zb’h%]- (21)
z1€Z; zyEZy JwiEM wy EWy Zl:l wy

3.1. Exact result: computational procedure for generalized centroid

We present an iterative procedure to compute the generalized centroid GC,
when each Z; in (21) is an interval type-1 set, having center ¢; and spread
s; (s; = 0), and when each W, is also an interval type-1 set with center 4, and
spread A, (4, = 0) (we assume that 4, > 4;, so that w, >0 for I =1,...,N).

We make the following observations:

1. Since Z,,...,Zy,W,,..., Wy are interval type-1 sets, GC will also be an
interval type-1 set, i.e., it will be a crisp set, [y, 1,]. So, to find GC we need to
compute just the two end-points of the interval, y; and y,.

2. Lety 2 Zf’:lz,w, / Ell\’:l wy. Since w; = 0 for all /, the partial derivative
0y/0z, = wy/ >, w; = 0; therefore, y always increases with increasing z;, and,

for any combination of {wi,...,wy} chosen so that w; € ¥, y is maximized
when z;, =¢;+s; for /=1,...,N, and y is minimized when z; = ¢; —s; for
[=1,...,N. y, is, therefore, obtained by maximizing

[Z:w,(c; +57) / lzljw/] (22)

subject to the constraints w; € W, for /=1,...,N; and, y; is obtained by
minimizing

e/ 3]

again subject to the constraints w, € W, for /=1,... N.

From these two observations, it is clear that in order to compute GC, we
only need to consider the problems of maximizing and minimizing the gener-
alized centroid

N
_ 2 2 (24)
D=1 Wi
subject to the constraints w; € [h; — A;,h; + 4;] for I = 1,...,N, where, i, > 4,
for /=1,...,N. As explained in observation 2 above, we set z; =¢; + s

y(W17"'>WN)
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(I=1,...,N), when maximizing y(w,...,wy),andz; = ¢, —s; (I=1,...,N),
when minimizing y(wy, ..., wy).
Differentiating y(wy, ..., wy) W.r.t. wy gives us
0 0 Nozw zr —y(wy, ..o, w
a—y(wla"'7WN):a—[ZlNl : ]‘|: u y(j\: N)' (25)
Wi Wi | Do Wi D Wi
Since Y, w; > 0, it is easy to see from (25) that
0 .
o (wl,...,wN)EO 1fzk§y(w1,...,wN). (26)

Equating 0y/0w;. to zero does not give us any information about the value of

wy when y(wy, ..., wy) is maximized or minimized, because
> 1 ZIW] 5:1#21‘4’1
- = = = = _ = 27
)’(Wh JWN) = Zk Zz ” Zk Zl#k ” Zk, ( )

where the summations are from 1 to N. Observe that w; no longer appears on
the RHS of (27). Eq. (26), however, gives us the direction in which w; should

be changed to increase or decrease y(wy,...,wy). Observe, from (26), that if
zi > y(wi, ..., wy), ¥(wi,...,wy) Increases as wj; increases; and, if z; <
y(wi, ..., wy), ¥(wi,...,wy) increases as w; decreases.

Recall that the maximum value that w, can attain is A; + 4; and the mini-
mum value that it can attain is 4, — 4. The discussion in the previous para-
graph, therefore, implies that y(wy,...,wy) attains its maximum value if: (1)
wy = Iy + A for those values of k for which z > y(wi,...,wy), and, (2)
wy = hy — A, for those values of k for which z; < y(wy,...,wy). Similarly,
y(wi,...,wy) attains its minimum value, if: (1) w, = h; — 4, for those values of
k for which z; > y(wy,...,wy), and, (2) w, = h + 4, for those values of k for
which z, < y(wy,...,wy).

The maximum of y(wy,...,wy) can be obtained by the iterative procedure
given next. We set z; =¢; +s; (I = 1,...,N); and, without loss of generality,
assume that the z,’s are arranged in ascending order, i.e., z; <z, < -+ <zy.

1. Set w,=h; for I =1,...,N, and compute y' = y(hy,...,hy) using (24).

2. Find k (1<k<N —1) such that z; <)Y <zy.

3. Set wy=h;—4; for I<k and w;=h;+ A; for | = k+ 1, and compute
V' =y(hy — Ay, .. hy — Ay gy + dist, - - by + Ay) using (24). (Since the
z;’s are arranged in ascending order, observe, from (26), the discussion after
(27), and the fact z; <)’ <z, that ) = )/, because we are decreasing w; for
[ <k and increasing w; for [ = k+1.)

4. Check if y" = y/. If yes, stop. ¥’ is the maximum value of y(wy,...,wy). If
no, go to step 3.

5. Set )’ equal to ). Go to step 2.
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It can easily be shown that this iterative procedure converges in at most N it-
erations, where one iteration consists of one pass through steps 2-5 (step 1 is an
initialization). At any iteration, let £’ be such that z;; <" <zp,;. Since y' = y/,
k' = k. If k' is the same as k, the algorithm converges at the end of the next
iteration. This can be explained as follows: £’ = k implies that both )’ and "
are in [z;,z;y1]. Note that, it is still possible that y” £ y/. If this happens,
however, observe from step 3 that ' =y(h — 4y, ... . ¢ — A, by +
A1, - hy + Ay); and, because of step 5, for the next iteration y' = y(h—
Avyoooyhy — Ay by + Agyry -« By + Ay). The index k chosen for the next
iteration will, therefore, be the same as the index k& chosen for the current
iteration (k' = k); consequently, at the end of the next iteration, we will have
y” :y(h] — A], . ,hk — Ak,h/ﬁq + AkJr], N ,]’lN + AN) :y/, and the algorithm
will converge. Since k can take at most N — 1 values, the algorithm converges
in at most N iterations.

The minimum of y(wy, ..., wy) can be obtained by using a procedure similar
to the one described above. Only two changes need to be made: (1) we must set
z7=¢; —s; for I=1,...,N; and, (2) in Step 3, we must set w; = h; + 4, for
I<k and wy=h;— A, for [ 2 k+ 1, to compute the generalized centroid
Vi=y(h+ 41, e+ A iy — Agias - by — Ay).

Although we have developed an exact computation procedure for the gen-
eralized centroid, some iterations are still required, and no closed-form formula
is available for computing it. To simplify the computation further, we develop
an approximate result for the generalized centroid.

3.2. Approximate result for generalized centroid

When each Z;, and W, is an interval type-1 set, we obtain the following
corollary to Theorem 2.1.

Corollary 3.1. When each Z; and W in Theorem 2.1 is an interval type-1 set, GC
in (12) is approximately an interval type-1 set with center € and spread &, where
€ is given by (15), and
¥ Sl [(husi) + ler — 614)]
Z}lvzl hy

provided that condition (16) is satisfied.

(28)

Proof. Observe, from Theorem A.1 that when each Z;, and W, in Theorem 2.1 is
an interval type-1 set, Z, is a zero mean interval type-1 set with domain [—s;, 5/]
and W, is a zero mean interval type-1 set with domain [—4,, 4,]. So, applying
Theorem A.1 to (12), the result in Corollary 3.1 follows. O
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3.3. Centroid for an interval type-2 set

For an interval type-2 fuzzy set, (2) reduces to

N
. [0[
C;z/ / 1) i (29)
01€1 On €Ty Zi:l 01‘

Let Jx,é[LhR,-]. To use the computational procedure described in Section 3.1,
note that x; plays the role of ¢;; s;, =0 for all i, since the x;’s are crisp;
(Li+R;)/2=h;; and, (R, — L;)/2 = 4A,.

For the centroid of an interval type-2 set, s; = 0 in (28), so Corollary 3.1
simplifies as follows.

Corollary 3.2. Consider the centroid in (29), where each J,, is an interval type-1
set with support [h; — A;, h; + A;]. Then Cj in (29) is approximately an interval
type-1 set with center € and spread &, where € is given by (19), and
S lei — |4

S b

provided that condition (20) is satisfied.

S = (30)

The proof of this corollary is very similar to the proof of Corollary 3.1, and
uses Corollary 2.1; hence, we leave it to the reader. Note that, even though we
have an exact computational procedure for computing the centroid of an in-
terval type-2 set, it requires up to M iterations of the 4-step iterative procedure,
whereas Corollary 3.2 only requires two computations, ¥ and &

For interval sets, condition (20) means the average spread of N interval sets
is much less than the average of the centers of these N sets.

Example 3.1. In Fig. 3, we show an interval type-2 fuzzy set 4. The x-domain
[0, 10] is uniformly sampled for N = 101 points (0:0.1:10), i.e., x; = 0.1(i — 1).
The centroid of this type-2 fuzzy set using the exact computation procedure is
[4.0388 — 0.3765,4.0388 + 0.3765] = [3.6623,4.4153], and that using the
approximate result in Corollary 3.2 is [4.0125 —0.3710,4.0125 + 0.3710] =
[3.6415,4.3835]. From (20), (X, 4;/ 32X h;) = 0.1747 < 1 where 4; and 4,
are the mean and standard of each w;(x;) (i=1,2,...,101). Observe that the
approximate results approximate the exact results very well when condition
(20) is satisfied.

4. Centroid of a Gaussian type-2 fuzzy set

Unfortunately, except for the interval type-2 set, we do not have an exact
procedure to compute the centroid of any other type-2 fuzzy set; hence, for all
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Fig. 3. The interval type-2 fuzzy set used in Example 3.1.

other type-2 sets we focus on an approximate result. An approximate result for
the generalized centroid of a Gaussian type-2 fuzzy set is given in the following
corollary to Theorem 2.1.

Corollary 4.1. If each Z; is a Gaussian type-1 set, with mean m; and standard
deviation o,, and if each W, is also a Gaussian type-1 set with mean h; and
standard deviation A;, then GC is approximately a Gaussian type-1 set, with
mean M and standard deviation X, where

N
= 2 him (31)
21:1 hy

and

\/ZV: [0+ ) 43]
- < D 'f product t-norm is used,
2= Zl:l hu (32)

N
Z,:l [(hy61)+|my—.tt|4))

Z}[V:l h

if minimum t-norm is used

provided that

kZL 4,
ZJIV:I hy

where k is the number of standard deviations of a Gaussian considered significant

< 1, (33)

(generally, k =2 or 3). The Gaussian approximation improves as k(3)_, A,/
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27:1 h;) grows smaller, and the result is exact when Zl,v:l A, =0, ie., when
A =0forl=1,... N.

Proof. Observe, from Theorem A.2, (13) and (14), that Z, is a Gaussian type-1
set with mean 0 and standard deviation ¢, and I, is a Gaussian type-1 set with
mean 0 and standard deviation {;; therefore, applying Theorem A.2 now to
(12), the result in Corollary 3.1 follows. O

A sufficient condition for satisfying (33) is that the Gaussian W, are narrow,
ie, k4;/h; < 1for I =1,...,N. Observe, however, that there is no condition
on the standard deviation of the Z;; consequently, when all the W, are crisp
numbers, the corollary gives an exact result.

Recall that we will use only minimum #-norm for the centroid calculation of
a type-2 set with a continuous domain (if the domain is discrete, however,
product -norm may be used). From Corollary 4.1, we get the following result
for the centroid of a Gaussian type-2 set.

Corollary 4.2. The centroid of a Gaussian type-2 set A is approximately a
Gaussian type-1 set with mean 4 (Cy), where

N
M(CY) = M» (34)
> i m(x;)
and standard deviation X(C ;) (under minimum t-norm), where
N
i1 |xi — AM(Cj ;
2(C,) = i |x (Ci)|o(x) (35)

Sy m(x) ’

as long as the standard deviations of the secondary memberships are small
compared to their means, i.e., if

k% <1 (36)

is satisfied, where k has the same meaning as in Corollary 4.1.

Proof. Observe that: (1) the x;’s in (2), which are crisp numbers, correspond to
the z,’s in (9); (2) the J,,’s in (2) correspond to the W;’s in (9); and, (3) the sum in
(2) goes from 1 to N instead of from 1 to M. If we denote the mean and the
standard deviation of u;(x;) as m(x;) and o(x;), respectively, then using Cor-
ollary 4.1, C; is approximately a Gaussian type-1 set with mean .#(C;) (given
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in (34)) and standard deviation X(C;) (given in (35)) provided (36) is satisfied,
i.e., if standard deviations of the secondary membership functions are small
compared to their means. [

Comment 1. See Fig. 1 for an example of a type-2 set, which can be made to
satisfy condition (36) easily. In this set the standard deviation of every sec-
ondary MF is proportional to its mean. If we set the constant of proportion-
ality to a small value, (36) can be satisfied.

Comment 2. Because the secondary MF at each x is a Gaussian type-1 set,
the primary membership which has a secondary grade equal to unity is m(x);
and, since the principal membership function is the set of those primary
memberships for which the secondary grades are equal to 1, m(x) for x € 4 is
the same as the principal membership function of A. Observe, therefore, from

1k
0.5
0 | X1 I I I X2 L L L X3
0.5 1 15 2 2.5 3 3.5 4 4.5 5 5.5
(a)
1 1 1
0.5 0.5 0.5
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
(b) (c) (d)
1 1 1
0.5 0.5 0.5
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
(e ® (9
1 1 1
0.5 0.5 0.5
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1

(h) 0] 0]

Fig. 4. Figures for Example 4.1. The domain of the discrete Gaussian type-2 set having 3 points,
x; =1, x, =3 and x; = 5, is depicted in (a). The spikes are shown only extending to m(x;) for il-
lustrative purposes.The secondary MFs of x;, x, and x; for case 1 are depicted in (b), (c) and (d),
respectively; the secondary MFs for case 2 are depicted in (e), (f) and (g); and, those for case 3 are
depicted in (h), (i) and ().
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(34), that the mean of the approximate centroid, .#(Cy), corresponds to the
centroid of the principal membership function of A.

Example 4.1. Now, we demonstrate the use of Corollary 4.2 with an example.

Consider a Gaussian type-2 set with a discrete x-domain consisting of only 3

points, x; =1, x, =3 and x; =5 (see Fig. 4(a)). Suppose that m(x;) = 0.1,

m(x,) = 0.8 and m(x;) = 0.6. We consider three cases:

1. If o(x;) = 0.05m(x;) for i = 1,2,3, the secondary MFs of x;, x, and x; are
shown in Figs. 4(b), (¢) and (d), respectively; and, the true centroid and
the approximation in Corollary 4.2 are as shown in Fig. 5(a). In this case,
when k =2, k[>", 0(x;)]/[>_; m(x;)] = 0.1.

2. If a(x;) = 0.3m(x), a(xz) = 0.1m(x,) and o(x3) = 0.2m(x3), the secondary
MFs of x;, x, and x; are shown in Figs. 4(e), (f) and (g), respectively; and,
the true centroid and the approximation in Corollary 4.2 are as shown in
Fig. 5(b). In this case, when k =2, k[>". a(x;)]/[>_, m(x;)] = 0.3066.

0.8 b
0.6 b
0.4 b
0.2 b

N
o
{Bo}
w
o
N
x
S
laf
o

0.8 i
0.6 b

0.4r b

1 15 2 2.5 3 3.5 4 4.5 5
X—

Fig. 5. True and approximate centroids of the Gaussian type-2 sets depicted in Fig. 4 for three
choices of o(x;) (i=1,2,3): (a) a(x)=0.05m(x;) for i=1,2,3; (b) a(x;)=0.3m(x),
o(x2) = 0.1m(x;) and o(x3) = 0.2m(x3); (c) o(x;) = 0.5m(x;) for i = 1,2,3.
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3. If o(x;) = 0.5m(x;) for i = 1,2,3, the secondary MFs of x;, x, and x; are
shown in Figs. 4(h), (i) and (j), respectively; and, the true centroid and the
approximation in Corollary 4.2 are as shown in Fig. 5(c). In this case, when
k=2, k32 00a)l/[32m(xi)] = 1.

When computing the true centroids, only primary membership values between

m(x;) £ 20(x;) were considered. Observe that, although the domain of the type-

2 set is discrete, that of its centroid is continuous, because the secondary

memberships of x;, x, and x; have continuous domains.

Observe, also, that the approximation in the first two cases is much closer to
the true centroid than that in the third case; however, although a smaller value
for >, o(x:)]/[>, m(x;)] will generally give a better approximation, it is not at
all easy to predict how close the actual centroid of a given Gaussian type-2 set
will be to its approximation. The same can be said about the approximation in
Corollary 4.1.

5. Conclusions

In this paper, we introduced the concepts of a centroid and a generalized
centroid of a type-2 fuzzy set and explained how to compute them. We have
shown that the centroid operation for a general type-2 fuzzy set is computa-
tionally intensive, but that it can be computed efficiently for interval type-2
fuzzy sets.

Using interval type-2 sets implies that we are associating equal uncer-
tainty with all the primary memberships (i.e., all the secondary grades are
unity). This is a very reasonable starting point, since, in general, we do not
have any additional information about the levels of uncertainty associated
with different primary memberships, something that is required to use other
kinds of type-2 sets. The use of Gaussian type-2 sets, for example, implies
that the most certain primary memberships lie on the principal membership
function, and the uncertainty decreases away from the principal membership
function.

We have presented a very efficient computational procedure for the centroid
of interval type-2 fuzzy sets. This procedure makes interval type-2 sets an
attractive choice when using type-2 FLSs. We also presented an approximate
result that can be used with type-2 fuzzy sets for which the type-2 uncertainty is
quantifiably “small”; it leads to tremendous savings in computation. For an
approximate result for the centroid of a triangle type-2 fuzzy set, see [9].

The centroid and generalized centroid operations are very important in the
implementation of type-2 FLSs [11,14,16], because they are needed to imple-
ment type-reduction methods [12].

An open research issue is how to reduce the computational complexity of the
centroid of arbitrary type-2 fuzzy sets.
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Appendix A. Operations on type-2 sets

Here, we present some background materials about type-2 fuzzy sets that
are needed in this paper. Recall that the secondary MFs of type-2 sets are type-
1 sets; therefore, in order to perform operations like union and intersection on
type-2 sets, we need to be able to perform f-conorm and 7-norm operations
between type-1 sets. This is done using Zadeh’s Extension Principle [5,11,24].

A binary operation * between two crisp numbers can be extended to two

type-1 sets F = [ f(v)/vand G = [ g(w)/w as
F G:/ /[f(v)*g(w)]/(u* W), (A1)

where % denotes a chosen #-norm. We will generally use product or minimum
t-norm. For example, the extension of the f-conorm (we generally use the
maximum z-conorm) operation to type-1 sets is

FUuG= / /V(v)*g(w)]/(v Vw). (A2)

This is called the join operation [19]. Similarly, the extension of the z-norm
operation to type-1 sets, which is also known as the meet operation [19], is

FNG :/ /.[f(v)*g(w)]/(v*w). (A.3)

We next show an example of the meet operation under product #-norm, when
the sets involved are interval type-1 sets.

Example A.l.Let Fand G be two interval type-1 sets with domains [/, 7/] and
[lg,7g], respectively. Using (A.3), the meet between F and G, under product
t-norm, can be obtained as

FI‘IG:/UEF /WEG(I x 1)/ (ow). (A4)

Observe, from (A.4), that: (a) each term in F M G is equal to the product vw for
some v € F and w € G, the smallest term being /,/, and the largest r/r,; and, (b)
since both F and G have continuous domains, F I G also has a continuous
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domain; consequently, F M G is an interval type-1 set with domain [/,1,, 7],
ie.,

FNG= / 1/u. (A.5)
u€(lplyryrg)

In a similar manner, the meet, M_, F;, under product #-norm of » interval type-1
sets Fl, ..., F,, having domains [I},r],..., [l,,r,], respectively, is an interval set
with domain [[]., Z;, [], :]. It is also easy to see that the meet of F, ... ,F,
under minimum #-norm is an interval set with domain [A” [;, AL 1], where A
denotes the minimum.

Kaufmann and Gupta [15] give a similar result while discussing properties of
fuzzy numbers.

Algebraic operations between type-1 sets can also be defined using (A.1),
e.g., the algebraic sum of two type-1 sets F = [ f(v)/vand G = [ g(w)/w is

FiG= / / [ (0) %g(w)] /(0 + w). (A.6)

We have the following results about algebraic sums of interval and Gaussian
type-1 sets.

Theorem A.1 [11,13]. Given n interval type-1 numbers Fy,...,F,, with means
my,my,...,m, and spreads s\,s,,...,s,, their affine combinationyy | o0;F; + f3,
where o; (i =1,...,n) and f are crisp constants, is also an interval type-1 number

with mean ", o;m; + 8 and spread ;| |o;|s;. This is true for any t-norm.

Theorem A.2 [11,13]. Given n type-1 Gaussian fuzzy numbers Fy, ..., F,, with
means my,my, . ..,m, and standard deviations oy,0,...,0,, their affine combi-
nation y ., o;F; + B, where o; (i =1,...,n) and [ are crisp constants, is also a
Gaussian fuzzy number with mean Y. o;m; + f, and standard deviation X',
where

otar i duct t- s used
5 {Zzll ora? if product t-norm is used, (A7)

" lowler if minimum t-norm is used.

Using the Extension Principle, an n-ary operation f(0y,...,60,) on crisp
numbers can be extended to n type-1 fuzzy sets Fy,...,F, as [11]

f(Fl,...,F,,):/H .../9MFI(QI)*...*Ha(e,,)/fw],...,e,,), (A.8)

where all the integrals denote logical union, and 0; € F; fori=1,...,n.



216 N.N. Karnik, J. M. Mendel | Information Sciences 132 (2001) 195-220

Appendix B. Proof of theorem 2.1

Here, we linearize (9), and express it as an affine combination of type-1 sets.
Ifwelety, =z —c,and 4, =w, —h; for [ =1,...,N, (9) becomes

Y:// // 3.?[:1#2,(01+Vl)*‘7.}IV:1:uW[(hl+5l)
71 /o on

S (4 81)(er+ 7))
Zzlv:l(h[ + 51) ’

where each 9, takes values in [—4,, 4;] and each 7, takes values in [—s;, s/].
The term to the right of the slash in (A.9) can be rewritten as

Yo iwizi _ o e+ D7 iy Y00+ 37,0,
lel Z[ hy +2151 ’

where the limits on each sum are from 1 to N.

In what follows, we express the term on the RHS of (A.10) as an affine
combination of y, and J, to find an (approximate) expression for Yin (A.9). We
expand the denominator of (A.10) by first rewriting it as

(A.9)

(A.10)

1 1 ( 1 )
Zlhl—’_Zlél_Zlhl 1"‘(2151/21}11)

1 > 5,)
~ i A.l1
Zlhl ( Zl hy ( )

as long as

122,01

=<1, A.12

Zl h] ( )
which is equivalent to assuming that (since J, varies between —A4,; and 4))

Z/ 4,

< 1. A.13
S (A.13)

Using (A.11) in (A.10), we get
douwizi Yo hier + 370 iy 37,6+, 00, 2100
~ - . (A14)
Wi >oih Sk

Ignoring all the terms containing powers of >, 6,/ >, #; higher than 1, we get

dawizi Do hier 32,00 <21th/> N >y
Wi - dohe X\ X doihi

26 (Z;hm> " >0 n >0

Zzhl Z/ h Z/ h Zz hy '

(A.15)
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Let
¢ = 2l (A.16)
Z/hl
then (A.15) can be rewritten as
Wiz ~ @ — (62151 2161C +Zzhl’//
d Wi Zzhl doih doih
2101 (Z/h//l) 215/71
_ A.17
Zzhl Zzhl Zlhl ( )
Next we focus on the last two terms in (A.17). Clearly,
Rl (B2
= | <|max . A.18
>oih il >k ( )
Since 7y, takes values between =+s;, (A.18) is equivalent to
2400 < maxs; 210 (A.19)
Zl hl Z/ hl
Similarly,
2l < maxs;. (A.20)
> !
Consequently,
_2151 <Zzhl“/1) +Zl o 2151 <Zzh171>‘
Z}hl Zlh/ Zlh/ Zlh[ Zlhl
|2l | 2maxs, 20| (A.21)
Zzh/ Zz l

Observe, from (A.17) and (A.21), that if condition (A.12) is satisfied, we can
ignore the last two terms on the RHS of (A.17) in comparison with
> hy/ >, b, which, according to (A.20), takes values in [— max; s;, max; s;].
Doing this gives us

w2 () o ()]

E= TS +0 + . A22

Zl w, ; Vi Zl h] i Zl h[ ( )
Using (A.22), (A.9) can be rewritten as

va [ [ [ [ Tk i+ )
71 N 1 oN
N
) o 5n)]
N QU s A23
/,Z:[M(Z/hz N (A.23)
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Recall that y, =z, — ¢; and 6, = w; — h;, and let

Z, =72 —¢ forl=1,...,N (A.24)
and

W, =W, —h, forl=1,...,N; (A.25)

so that each Z, is a type-1 fuzzy number with support [—s;,s;] and each I, is a
type-1 fuzzy number with support [—4,, 4,]. Observe, from (A.24) that

Z= | w e/

2l

— [ wato+ e

Z1

= pz,(cr+71) = pg, (7,)- (A.26)

Similarly, py, (h; + 01) = py (6;). This means that (A.23) can be rewritten as

YN/ //»1 /A bz, (7% Ty, (81)
/Z_: Pl(Z;h)”’(z,f)]*% (A.27)

The result in Theorem 2.1 follows by observing that the RHS of (A.27) is equal

() a5

(see (A.Q)).
Comment. When all A; =0, there is only one source of fuzziness in
> ywizi/ >, wi, namely, the Z’s. In this case, (9) reduces to

Y(Zy,. ... Zy by By / / T 1z, (21) Zih ’ZI. (A.28)
S

Again, letting y, =z, — ¢, for [ =1,...,N, we have
Y(Zi,. oo\ 2y hy)

Zl e +7))
1 Vg, (e + 1)
/ / Zl 1/’11

/ / 111z, Cl+/1)/[%+ﬁ;yl<%ﬂ
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Il
T~
N
7=
=
N
B
+

N h,
ot Z & ZJIV—I hy

=1

Il
T~
N
7=
=

IN

K

+
(-
]

2 ~
=

— - hl @
=> 2| =— | +%. (A.29)

where Z, and % are as defined in (A.24) and (A.16), respectively. Observe that,
in this case, the result in Theorem 2.1 is exact.

References

[1] J.L. Chaneau, M. Gunaratne, A.G. Altschaeffl, An application of type-2 sets to decision

making in engineering, in: J.C. Bezdek (Ed.), Analysis of Fuzzy Information — vol. II: Artificial

Intelligence and Decision Systems, CRC Press, Boca Raton, FL, 1987.

D. Driankov, H. Hellendoorn, M. Reinfrank, An Introduction to Fuzzy Control, second ed.,

Springer, Berlin, 1996.

[3] D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Systems Sci. 9 (6) (1978) 613-626.

[4] D. Dubois, H. Prade, Operations in a fuzzy-valued logic, Inform. Control 43 (1979) 224-240.

[5] D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, NY,

1980.

E. Hisdal, The IF THEN ELSE statement and interval-valued fuzzy sets of higher type, Int. J.

Man-Machine Studies 15 (1981) 385-455.

[71 R.I. John, Type 2 fuzzy sets: an appraisal of theory and applications, Int. J. Uncertainty,

Fuzziness Knowledge-Based Systems 6 (6) (1998) 563-576.

R.I. John, P.R. Innocent, M.R. Barnes, Type 2 fuzzy sets and neuro-fuzzy clustering of

radiographic tibia images, in: 1998 IEEE International Conference on Fuzzy Systems,

Anchorage, AK, USA, May 1998, pp. 1373-1376.

[91 N.N. Karnik, Type-2 fuzzy logic systems, Ph.D. Dissertation, University of Southern

California, Los Angeles, CA, 1998.

[10] N.N. Karnik, J.M. Mendel, Introduction to Type-2 Fuzzy Logic Systems, presented at the
1998 IEEE FUZZ Conference, Anchorage, AK, May.

[11] N.N. Karnik, J.M. Mendel, An introduction to type-2 fuzzy logic systems, October 1998, USC
Report, http://sipi.usc.edu/~mendel/report.

[12] N.N. Karnik, J.M. Mendel, Type-2 Fuzzy Logic Systems: Type-Reduction, presented at the
1998 IEEE SMC Conference, San Diego, CA, October.

[13] N.N. Karnik, J.M. Mendel, Operations on type-2 fuzzy set, Fuzzy Sets Systems (2000).

[14] N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems, IEEE Trans. Fuzzy Systems
7 (6) (1999) 643-658.

[15] A. Kaufmann, M.M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications, Van
Nostrand Reinhold, NY, 1991.

[16] Q. Liang, J.M. Mendel, Interval type-2 fuzzy logic systems: theory and design, IEEE Trans.
Fuzzy Systems 8 (5) (2000).

[17] J.M. Mendel, Fuzzy Logic Systems for Engineering: A Tutorial, Proc. IEEE 83 (3) (1995)
345-377.

2

—

[6

—

8

—_



220 N.N. Karnik, J. M. Mendel | Information Sciences 132 (2001) 195-220

[18] J.M. Mendel, Computing with words when words can mean different things to different people,
presented at Int’l. ICSC Congress on Computational Intelligence: Methods & Applications,
Third Annual Symposium on Fuzzy Logic and Applications, Rochester, NY, June 22-25,
1999.

[19] M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of type-2, Inform. Control 31 (1976)
312-340.

[20] M. Mizumoto, K. Tanaka, Fuzzy sets of type 2 under algebraic product and algebraic sum,
Fuzzy Sets Systems 5 (1981) 277-290.

[21] J. Nieminen, On the algebraic structure of fuzzy sets of type-2, Kybernetica 13 (4) (1977).

[22] M. Wagenknecht, K. Hartmann, Application of fuzzy sets of type 2 to the solution of fuzzy
equation systems, Fuzzy Sets Systems 25 (1988) 183-190.

[23] R.R. Yager, Fuzzy subsets of type II in decisions, J. Cybernet. 10 (1980) 137-159.

[24] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning —
1, Inform. Sci. 8 (1975) 199-249.



