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Abstract—This paper presents a connection admission control achieved. If the QoS can be met without deteriorating those
(CAC) method that uses a type-2 fuzzy logic system (FLS). Type-2 of the existing calls, then the call is admitted, otherwise it
FLSs can handle linguistic uncertainties. The linguistic knowledge is rejected. This traffic control function for an ATM system

about CAC is obtained from 30 computer network experts. A . e .
methodology for representing the linguistic knowledge using called connection admission control (CAC), decides whether

type-2 membership functions and processing surveys using type-2t0 accept or reject a call based upon availablity of capacity
FLS is proposed. The type-2 FLS provides soft decision bound- required to support its QoS. Thus an estimate of the QoS is

?ﬂes, V\éPedfea.S.a tykf)e-ldFL'S provides adhar? dtiCiSioql llaoundatry. required based on monitoring traffic patterns and buffer status,

e SO ecision poundaaries can coordinate tnhe cell 10Ss ratio ; 1P H ] i

(CLR) and bandwidth utilization, which is impossible for the hard \év;:; :n:jmdp;:}?r:/talga(ziitﬁ;mlnmg the cell loss probability, cell

decision boundary. e . e . i
Taking into consideration factors like the source traffic de-

scriptor, the amount of current network congestion along the

path of the incoming call, and QoS requirements of the new

and the pre-existing calls is a daunting task for any mathemat-

ical model. We believe that thiype of services class the

. INTRODUCTION most important class. A service is a real-time service, such as

SYNCHRONOUS transfer mode (ATM) is the mosivoice and video, or a nonreal-time service, such as text data;
A promising technology for supporting broadband muience, we only study two descriptotefal aveage input rate
timedia communication services. The advantages of ATRf real-time voice and video traffiendtotal aveageinput rate
networks are the flexibility to accommodate a diverse mixtuf@f nonreal-time data traffic _ o
of traffic which possess different traffic characteristics and €hong and Li [5] realized the CAC via a probabilistic
quality of service (QoS) requirements. The ATM techmqugurstiness-curve, in which each. sgssion conpection is defined
provides an attractive solution to the problem of integrating difty the buffer space and transmission bandwidth. Zhang et al.
ferent types of services, with widely different bit-rates, througi#0] presented a uniform CAC scheme based on a Chernoff
common interface and switching fabrics. It is a compromideound method that uses a simple novel traffic model requiring
between packet switching and circuit switching techniques. ©nly a few parameters. Evans and Everitt [10] focused on the

A set of traffic control functions must be provided by thd€wly-developed CDMA cellular networks and proposed an
ATM network to ensure the QoS of each service and to achiegfective bandwidth-based CAC method.
a high network utilization. The wide range of service character- The decision-making nature of CAC has attracted many re-
istics, such as bit rates, burstiness factors, cell delay constra#§rchers to apply FLSs and neural networks to it, e.9., [8], [12],
(latency), cell loss tolerance (accuracy), and priority combindd3]- Fuzzy logic systems (FLSs) are known to represent and
with the need for adaptive, and sometimes real-time serviddgmerically manipulate linguistic rules in a natural way and for
makes the use of traditional control methods very difficult. their ability to handle problems that conventional control theory

Although ATM networks can support a wide variety offannot approach successfully because the latter relies on a valid
transmission rates and provide transmission efficiency nd accurate model which does not always exist, and, FLSs have
asynchronous multiplexing, a cell might be lost in ATMRISO been extensively used in system modeling, e.g., [6], [30],
switches if cells are excessively fed into the networks. In ordE38l-
to avoid this situation, the terminals are required to declareChangetal.[3], [4] proposed a power-spectrum based neural
their transmission rates as traffic parameters, e.g., peak defzy CAC for ATM networks. They constructed a decision
rate (PCR) and sustainable cell rate (SCR), in advance fyfperplane of the CAC according to the parameters of the
transmission. According to these declarations of transmissiBAWer spectrum. They devised rules which used the following

rates, ATM switches judge whether the required QoS can B@e-1 fuzzy sets in antecedents séght load, medium load,
and heavy loadand the following type-1 fuzzy sets in conse-
quent setsstraightly reject, weakly reject, weakly accept, and
Manuscript received August 17, 1998; revised January 1, 2000 and Maysf,ra'ghtly acceptAII of these rules are based OITI the knowledge
2000. from a single expert; but, words can mean different things to
The al_Jthors are Wit'h the Signal and'lmage Processing Insti_tute,_ Departm@ffferent people [27]_ Experts have diverse opinions about the
of Electrical Engineering Systems, University of Southern California, Los An- . . . . .
geles, CA 90089-2564 USA (e-mail: mendei@sipi.usc.edu). meaning of linguistic labels, and they often provide different
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on just one expert are partial; they ignore the uncertaintiescur, as we just explained, due to the use of words and their
associated with collecting rules from a group of experts. assciated membership functions. For example, in a type-1

Uehara and Hirota [33] studied the possibility distribution ofLS-based CAC method, a typical rule might be: IF the total
cell loss as a function of the number of calls per class, byagerage input rate of real-time voice and video trafficais
fuzzy inference scheme based on the observed data of cell logyerate amountAND the total average input rate of the
ratio (CLR), and obtained the upper bound of CLR. They ajponreal-time data traffic isome THEN the confidence of
plied fuzzy inference to estimate the possibility distribution aiccepting the call ia large amountin this case, a type-2 FLS
CLR, which was then a basis for admission control decisiorgan effectively provide a natural mechanism to represent the
Mehrvar and Le-Ngoc [25] also proposed a CAC scheme usikggueness inherent in theisalicized linguistic labels.

a type-1 FLS to estimate the level of traffic burstiness; they es-In Section Il, we give an overview of the recently developed
timated hurst parameters and used them for CAC in an adaptilieory of type-2 FLSs. In Section Ill, we present a survey-based
environment. CAC using type-2 FLSs, and, in Section IV, we present our con-

Comparing the existing FLS-based CAC approaches a@lgisions.
other approaches, the main difference between them is thatn this paper.A is a type-1 fuzzy set, and the membership
FLSs can handle expert knowledge and numerical data irgeade ofr € X in Ais z1.4(z), which is a crisp number iff), 1].
unified framework, and the FLS-based approach requires léstype-2 fuzzy setinX is A, and the membership grade:ok
computing complexity. X in Ais py(2), which is a type-1 fuzzy set if9, 1]. The ele-

In this paper, we treat the CAC asyeoup decision making ments of the domain gi ; (x) are calledprimary memberships
problem wheregroup means experts. In [7], a fusion operatopf = in A and the memberships of the primary memberships in
which can combine numerical and linguistic information was int 3 () are calledsecondary membership$ = in A. The latter
troduced to deal with group decision making problems. In [24§€fines the possibilities for the primary membershig(z),
three ways to improve the pairwise group decision making base@ be represented, for eache X, asyiy(z) = [, faluw)/u,
on fuzzy preference relations were proposed, and the authr§ 7= € [0, 1]; when the secondary MFs are type-1 interval
observed the disadvantages of using type-1 fuzzy sets, and (&S, we call the type-2 set anterval type-2 set
posed to extend them to type-2 fuzzy sets as their future research
directions. In addition, Tanaka and Hosaka [32] observed the

difficulties of obtaining appropriate MFs for efficient commu- ||. TypPE-2 FUzzY LOGIC SYSTEMS: A BRIEF OVERVIEW
nication network control, which suggests that type-2 MFs will
be a better way to represent the uncertainty in network. In a FLS, rule uncertainties can occur due to linguistic or

To date, type-2 sets and FLSs have been used in decisishinerical uncertainties in the knowledge used to construct the
making ([2], [37]), solving fuzzy relation equations [34]rules. These uncertainties can be handled by using type-2 fuzzy
time-series forecasting [21], MPEG video traffic modeling angets. The concept oftgpe-2 fuzzy setas introduced by Zadeh
classification [22], function approximation [15], time-varying39] as an extension of the concept of an ordinary fuzzy set
channel equalization [18], control of mobile robots [36], anthenceforth called type-1 fuzzy sptA type-2 fuzzy setis char-
pre-processing of data [14]. acterized by a fuzzy membership function, i.e., the membership

In this paper, we consider the design of a FLS that is based §Hue (or membership grade) for each element of this set is a

rules collected by surveying a group of experts. In this situatioftizzy Set in[0,1], unlike a type-1 set where the membership
two types of uncertainties can arise. grade is a crisp number [0, 1]. Such sets are useful in circum-

stances, where it is difficult to determine the exact membership

1) Different experts often give different answers to thﬁmction for a fuzzy set; hence, they are useful for incorporating

same question, which results in rules having the sa Rcertainties

antecedents, but different c_onsequents. Consgquent yFig. 1 shows an example of a type-2 set. The standard devia-
Zzzt]vgs to rule-based questions lead to uncertain CONF6is of the secondary Gaussians are the same for ktensity
) . . . of the shading is approximately proportional to secondary mem-
2) Because Word§ mean @fferent thmgg to dlffgrent peop ership grades. Darker areas indicate higher secondary mem-
and mgmbersh|p functions are associated with words ( 2rships. The flat portion from about 4.5 to 5.5 appears because
bels)_, if we also ask the experts about the mempersmﬂmary memberships cannot be greater than 1 (since primary
funct|_0n parameters (e.g., center, spread), we are I'k‘?lyrﬁ)emberships, themselves, are possible membership values, they
get different answers for these parameter values. This Ve to be ir{0, 1]) and so the Gaussians have to be “clipped.”
sults in uncertair_1 membership functiqns. Cohsequent he domain of’the membership grade corresponding-to is
answers to queries about mempgrsh|p funcUops leada{%o shown. The membership grade for every pointis a Gaussian
uncertain antecedents and additional uncertainty abcg%e_l set contained iff, 1], we call such a set a “Gaussian
consequents. type-2 set”. When the membership grade for every point is a
In this paper, we show how the above two kinds of uncertaintiedisp set, the domain of which is an interval containefdiri],
can be handled in the framework of type-2 FLSs [16], [17]. we call such type-2 sets “interval type-2 sets” and their member-
This paper develops a survey-based CAC method usiskip grades “interval type-1 sets.” Interval type-2 sets are very
type-2 FLSs. A type-2 FLS provides a new and powerfulseful whenwe have no other knowledge about secondary mem-
framework to represent rule uncertainties. Rule uncertaintiBsrships. Since all the memberships in an interval type-1 set are
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Fig. 1. (a) Pictorial representation of a Gaussian type-2 set. The secondgity. 2. (a) An interval type-2 set. Since all the secondary memberships are
memberships in this type-1 fuzzy set are shown in (b), and are Gaussianity, the shading is uniform all over. The domain of the membership grade
Note that this set is called a Gaussian type-2 set because all its secondaryesponding ta: = 0.65 is also shown. The secondary memberships in this
membership functions are Gaussian. The “principal” membership functitype-1 set are shown in (b), and are all equal to 1, i.e., the membership grade is
(the bold line—see [15], [16] for further discussion), which is triangular in thian interval type-1 set.

case, can be of any shape.

L . . B. Operations on Type-2 Sets
unity, in the sequel, we represent an interval type-1 set just by its

domain interval, which can be represented by its left and right Récall that the membership grades of type-2 sets are type-1
end-points ag, r]. The two end-points are associated with tw§etS: therefore, in order to perform operations like union and

type-1 MFs that we refer to agoperandlower MFs[21]. intersection on type-2 sets, we need to be able to perfo'rm
t-conorm and¢-norm operations between type-1 sets. This
A. Upper and Lower MFs is done using Zadeh's Extension Principle [9], [15], [39]. A

binary operation between two crisp numbers can be extended

For convenience in defining the upper and lower MFs of @ two type-1 setd” = [ fw)/vandG = [ g(w)/w, as
type-2 MF, we first give the definition dbotprint of uncertainty 0 ¢

of a type-2 ME

D.efinition 1 (Fpotprint pf Uncertainty Qf a Type-2 FsG = // [f (v) * g(w)] /(v * w) )
MF): Uncertainty in the primary membership grades of a vJw
type-2 MF consists of a bounded region, that we call the i
footprint of uncertaintyof a type-2 MF. It is the union of all Wherex denotes the chosefinorm. We will generally use
primary membership grades. product or minimurrt-norm. For example, the extension qf the

Definition 2 (Upper and Lower MFs):An upper MF and a t-conorm (we generally use the maximuraonorm) operation
lower MF are two type-1 MFs which are bounds for the foot® type-1 sets is
print of uncertainty of an interval type-2 MF. The upper MF is a
subset which has the maximum membership grade of the foot-
print of uncertainty; and, the lower MF is a subset which has the FUG= /b /w[f(v) *g(w)l/(vV w). ®3)
minimum membership grade of the footprint of uncertainty.

For example, in Fig. 2, the upper MF is plotted using a heawhis is called thgoin operation [28]. Similarly, the extension of
solid line, and the lower MF is plotted using a heavy dashed lindae t-norm operation to type-1 sets, which is known asrttest
We use an overbar (underbar) to denote the upper (lower) Miperation [28], is
For example, the upper and lower MFSLng]i (zx) arefij. (zr)
andﬁﬁ; (z1), SO thatupi (zx) can be expressed as

rne= [ [ (o gwlwsw) (4)

fet (1) = / 1/w'. (1) We next show an example of theeetoperation under product
w'e [ﬁpi @k )t (m} t-norm, when the sets involved are interval type-1 sets.
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Example 2.1:Let I andG be two interval type-1 sets with  We, next, define the concept of the “centroid” of a type-2 set
domains(i;, ;] and [l ,r,], respectively. Using (4), thmeet using (8). This concept is required in a type-2 FLS.
betweent' and, under product-norm, can be obtained as Recall that the centroid of a type-1 sét whose domain is
discretized intaV points is given as

rna :/ / (1x1)/(vw). 5) N
veF JweG ca = Ei:l ‘/Ell’LA(‘/El) (9)
P T ]\T -
Observe, from (5), that 1) each term inm G is equal to the 2im1 (i)
productyw for somev € I'andw € G, the smallest term being Similarly, the centroid of a type-2 set, whose domain is dis-

Lyly and the largest,r, and 2) since botli” and haye.con cretized intoN points, can be defined using (8) as follows. If
tinuous domainsF I G also has a continuous domain; conse-

quently,F'r1G is an interval type-1 set with domaikyl,, 7 7], e letD; = juz(w:), then

ie.,
A_/ / NDI 91 *NDN GA’]/EZ 1$Zz
FNdG= 1/u. & o
u€Ellplg,rsryl (10)
In a similar manner, theneet ;" F;, of n interval type-1 sets where, € D;, and all the integrals denote logical union.
Fy,..., F,, having domaingly,r1],. .., [l., 7], respectively,  Equation (10) can be described in words as follows. Each
is an interval set with domaiff [}, #;, [T;—, 7. point z; of A has a type-1 fuzzy membership grade, =
[19] gives a similar result for the multiplication of fuzzy, - (;), associated with it. To find the centroid, we consider
numbers. O every possible combinatiofé:, ..., 6y} such thatd; € D;.

Fast algorithms for computing thjein and meetof type-1 For every such combination, we perform the type-1 centroid cal-
fuzzy sets have also been developed for the cases wheredhigtion in (9) by using;s in place ofi 3 (;)s; and, to each
sets involved are not interval type-1 sets (see [15] and [16] fgbint in the centroid, we assign a membership grade equal to
details). the t-norm of the membership grades of e in the D;s. If

Algebraic operations between type-1 sets are also defing@re than one combination éfs gives us the same point in the
using (2), e.g., the algebraic sum bfand G can be defined centroid, we keep the one with the largest membership grade.
as Every combination{#6,,....0x} (8; € D,), considered

when computing”';, can be thought to form the membership
F+G= // [f(v) % g(w)]/(v + w). (7) function of some type-1 set’ which has the same domain as
vJSw A. We call A’ anembedded type-1 setA [see Fig. 3(a) for two

Using the same reasoning as in Example 2.1, it can be sho@¥@mples of embedded type-1 sets]. Every embedded type-1
that whenF” andG are interval type-1 sets with domaifig, ;]  Set also has a weight associated with it, which is calculated
and[l,,r,], respectively, their algebraic sum is also an intervas the¢-norm of the secondary memberships corresponding
type-1 set with domaifi; +1,, 7 + ,] (see [19] for a similar t0 {fy,...,6x} that make up that embedded set. The type-2
result). More generally, we have the following result for interveet A can, therefore, be thought of as a large collection of

type-1 sets. embedded type-1 sets, each having a weight associated with
Theorem 1: Givenn interval type-1 setd?, ..., F,,, with it, and its centroidC’; can be thought of as a type-1 set whose

meansmn,,ms, ..., m, and spreads, , s, ..., s,, their affine €lements are the centroids of all the embedded type-1 sets

combination>™"_, «; F; + 3, whereo; (4 = 1,...,n) and in A, and their memberships are the weights associated with

/3 are crisp constants, is also an interval type- 1 set with metie corresponding embedded sets. The centroid computation

> aym; + B, and spread " Jals;. O simplifies considerably wher is an interval type-2 set, as we
See [15], [16] for the proof of Theorem 1. show next.

Observe, from (2) and (4), that, when using produobrm,  If A is an interval type-2 set, (10) simplifies to
the product off” and G is the same as theeetof F' and G,
hence, all our earlier discussions aboutrieeiperation under L Ez 1 ib;
o Cy = (11)
productt-norm apply to the multiplication of type-1 sets under 6 on Yoini b
productt-norm. . _
Using the Extension Principle, am-ary operation Where eactd; belongs to some interval v, 1]. We present a

f(61,...,6,) on crisp numbers can be extendedntdype-1 Procedure for computing (11) in the Appendix .
fuzzy setsFy, ..., F, as [18] Example 2.2:Consider the interval type-2 set in Fig. 2,

shown again in Fig. 3(a). Using the Appendix computational
f(E,. . F, procedure, we find thaf'; is an interval type-1 set with domain
[0.398 55,0.601 45]. As explained in Appendix , only two sets
/01 / pr (01) %ok pop, (00)/F(O15 - 0) - (8) o computations are needed to obtdiy, one each for its left
and right end-points. O
where all the integrals denote logical union, ahde F; for See [17], [15], [18] for more discussions about the centroid
t=1,...,n. of a type-2 set.
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Fig. 4. Structure of a type-2 FLS. In order to emphasize the importance
of the type-reduced set, we have shown two outputs for the type-2 FLS, the
type-reduced set and the crisp defuzzified value.

OEg

ol 1 1 1
mab 0.8 0.8 Y 0.8 Y,

0.6 0.6 0.6

D2k
0.4 0.4 0.4

o
035868 060145 0.2 0.2 0.2
L] \
0 0 0
Fig. 3. (a) The interval type-2 set shown in Fig. 2. Two embedded type-1 st (@) y = (b) y = (© y -

are also shown, one with a thick dashed line and the other with a thick solid

line. (b) Centroid_ofthg type-2 setin Fig. (a), computed using the computatioq_a}b. 5. Pictorial representation of tioeitput processingn a type-2 FLS. For
procedure described in the Appendix . an applied input, the type-reducer first combines the individual rule output
sets in some manner to obtain (a) combined outputsetnd then, fromB
. (b) creates a type-1 sét;, which we call the type-reduced set. (c) Defuzzifier
C. Type-2 Fuzzy Logic Systems produces a crisp outpuj, from the type-reduced set.

Fig. 4 shows the structure of a type-2 fuzzy logic system
(FLS). Itis very similar to the structure of a type-1 FLS [26]. Fotheth rule is computed as
atype-1FLS, theutput processinglock only contains the de-
fuzyz?fier. When an ian))utFiJs appliedtt)o atype—yl FLS, theinference "' (@) * @) o ppglap) = Ty (2) - (13)
engine computes the type-1 output set corresponding to eg@here« and7 both indicate the chosemorm. There are many
rule. The defuzzifer then computes a crisp output from theggds of defuzzifiers. In this paper, we focus, for illustrative pur-
rule output sets. For a type-2 FLS, the antecedent and/or conggses, on the center-of-sets defuzzifier [31]. It computes a crisp
quent sets are type-2, so that each rule output set is type-2. “lsitput for the FLS by first computing the centroigl, of every
tended” versions of type-1 defuzzification methods [obtaineghnsequent set?, and, then computing a weighted average of
using (8)] yield a type-1 set from the type-2 rule output setghese centroids. The weight corresponding toltherule con-

We call this procestype-reductiorrather than defuzzification, sequent centroid is the degree of firing associated withtthe
and the resulting type-1 set, thgpe-reduced sefThe defuzzi- rule, 72,y () [see (13)], so that

fier in the type-2 FLS can, then, defuzzify the type-reduced set

to obtain a crisp output for the type-2 FLS. Output processing is SM e TR i (%)

. T - S / 1=1 CG1 4i=1 HFIT;
depicted pictorially in Fig. 5. The fuzzifier maps the crisp input Yeos(X') = ——37 T - (14)
into a fuzzy set. This fuzzy set can, in general, be a type-2 set; 2= i=1HF} (7)

however, in this paper, we consider osipgletonfuzzification, \yhereis is the number of rules in the FLS.
for which the input fuzzy set has only a single point of nonzero 5y Tyne > FLS:Now, consider ap-input 1-output type-2

membership. FLS, using singleton fuzzificatiorgenter-of-setgype-reduc-
To see the difference between a type-1 FLS and type-2 FLif, [15], [17] and rules of the form

we first review a type-1 FLS.
1) Type-1 FLS:Consider ap-input 1-output type-1 FLS, RUIF 2y is F{ andzs is F§ and - - - and,, is I,
using singleton fuzzificationcenter-of-setsdefuzzification THEN yis G'. (15)
[15], [17], [31] and “IF-THEN?" rules of the form [23]
Note that, although we have shown all the antecedent and conse-
quent setsto be type-2in (15), it need not necessarily be so. Even

1. H l H l H l
REF zyis Iy anday is Iy and - - - andy, is I, if only one of the antecedents or the consequent is type-2, the

THEN y is G. (12) FLSistype-2. Whenaninpat = {z1,...,x,} is applied, the
inference engine computes the degree of firing of each rule by
Assuming singleton fuzzification, when an inpa = performingtheneetoperation (4) between the antecedent mem-

{z,...,z,} is applied, the degree of firing corresponding tdership grades of each rule. The degree of firing corresponding
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to thelth rule is [see (13)] accomodate their own thoughts and preferences, and let their
, , , . , decisions be more flexible, since requirements about cell loss
pi (@) O prg () '_'""_'NF;(%) =M1t (7). (18)  ratio (CLR) and bandwidth untilization cannot be mutually
The center-of-sets tvpe- . sagisfied. Lower CLR and higher bandwidth utilization are

ype-reducer, then, requires the centrm . ) ) .
of each rule consequent. Centroid computations are done as e_de_swed performance of CAC; but, for a f|xegl bandwu_jth
plained in Section 11-B bnce all the consequent centroids a&ﬁf&caﬂon scheme, lower CLR means less bandwith utilization,

) . fid higher bandwidth untilization means higher CLR. A type-1
computed, the center-of-sets type-reduced set is computedéli provides a single decision boundary for CAC, which
using the extended version of (14) as follows [15], [17]: means a compromise decision has to be made with respect to

, M . CLR and bandwidth untilization. On the other hand, as we
Yoos(x') = /11 "'/IM / ), =1hct(y) demonstrate below, a type-2 FLS provides a region bounded by
Y e two decision boundaries, so that designers are free to choose
* TM e () Zl}l i 17) a deci_sion b_o_undary to meet their preferences, e.g., higher
Yoy fi bandwidth utilization.
o g . Designing a survey-based type-2 FLS includes collecting the
where7 andx indicate the chosefinorm;y” € C° = Cei, the  nowledge, setting the rules, choosing and defining antecedent

H . [ . . . .
centroid of théth consequent set; anfl, € I = T_; 1z (23),  and consequent membership functions, choosing type-reduc-
the degree of firing associated with tfté consequent set, for tjon, and extracting decision boundaries.

I=1,...,M.

A crisp output for the FLS is obtained by finding the centroig\' Extracting the Knowledge for CAC
of Y5 (x'). This is the defuzzifier step shown in Fig. 4.

The type-reduced set of a type-2 FLS shows the possible vari{n ATM networks, input traffic is often classified into
ation in the crisp output of the FLS due to uncertain naturé40 classes. Class 1 is real-time voice and video traffic, and
of the antecedents and/or consequents. It establishes a barfdld$s 2 is nonreal-time data traffic. We, therefore, used two
values around a crisp output value in much the same way tiéecedents for our FLS-based CAC—the total average input
a confidence interval establishes a band about a point estinf@ of real-time voice and video traffic, and the total average
when stochastic uncertainty is present; but, it does this for liifiPut rate of nonreal-time data traffic. The linguistic variables
guistic uncertainties. used to represent th_e input rate of traffic were divided into five

A general type-2 FLS has a high computation complexity, plgvels:none to very littlgNVL), some(S), a moderate amount
things simplify a lot when the secondary membership degreddOA); a large amoun{LA), anda maximum amourMAA).
aninterval. In this paper, we use an interval type-2 FLS for CAG € consequent—the confidence of accepting the call—was

The theory and design of an interval type-2 FLS is given i:ﬁlg,o divided into these same five levels. We used rules ob-
[21]. Here we briefly summarize the resuits for computing thgined from the knowledge of many network experts (30 USC
firing interval when a singleton fuzzifier is used. electrical engineering Ph.D. students who have studied EE555

Theorem 2: In an interval type-2 FLS with meet under mir]_broadband network architectureWe surveyed these experts

: S - using questions such as:
imum or product-norm, the firing intervalt = [f, /] of the g4 _ . . .
= IF the total average input rate of real-time voice and video

Ith rule is . :
traffic is a moderate amountaind the total average input
f = Ev(xl) *ox (zp) (18) rate of the nonreal—time data 'Fraffic & Iarge amount
and t ? THEN the confidence of accepting the call is

a4 B These experts were requested to choose a consequent using one
Fo=hpe () oo i (). (19)  of the five linguistic variables. Different experts gave different
answers to the questions in the survey.

As pointed out in [27], “words mean different things to dif-
ferent people,” and in [24], “the decision makers may have the

The proof of this Theorem is given in [21].
For an interval type-2 FLS, (17) reduces to

) E%lylfl same preferences to a particular alternative, e.g., highly pre-
Yeos (X') = / o / y / / 1) == ferred but with different degrees,” so, we created two different
Y | yran M =1 fi kinds of surveys for the network experts. The first survey asked

= v,y (20)  the experts to locate each linguistic label in the intefgalo]

. . . domain. We randomized the five labels, as shown in Table |, so
wherey* € C* (centroid of the consequent set), affid € A
. m . o that they are uncorrelated. For each linguistic label, we got 30
[/, f*]. These computations are not difficul. andy,. can be . s f h d h dth
computed using the procedure presented in the Appendix intervals from the 30 experts, and we then compL_Jte the mean
" and std of the label’s two end-points. We summarize the survey
results in Table Il and Fig. 6. Observe, in Fig. 6, that overlap
ll. SURVEY-BASED CAC UsING TYPE2 FLS5 betweernsomeandnone to very littleand betweera moderate
We apply type-2 FLSs to CAC for ATM networks, inamountanda large amounbnly occurs due to consideration of
which the type-2 rules are based on a survey regarding tivcertainties.
CAC as determined by the input traffic. We chose a type-2 The second survey is the CAC technical survey. Table 11l sum-
FLS for CAC to give ATM network designers more room tanarizes the questions used in this survey (the questions were
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TABLE | TABLE Il
SURVEY TABLE: RANDOMIZED LABELS QUESTIONS FORCAC IN ATM NETWORKS ANTECEDENT 1 IS THE TOTAL
AVERAGEINPUT RATE OF REAL-TIME VOICE AND VIDEO TRAFFIC, ANTECEDENT
Linguistic label Start | End 2 1S THE TOTAL AVERAGEINPUT RATE OF NONREAL-TIME DATA TRAFFIC, AND

CONSEQUENTIS THE CONFIDENCE OFACCEPTING THECALL. THE EXPERTS
WERE ASKED TOFILL IN THE BLANK FOR THE CONSEQUENTUSING ONE OF
FIvE LINGUISTIC LABELS. THEY WERE GIVEN A RANDOMIZED VERSION

none to very little OF THESE 25 QUESTIONS
a large amount

a maximum amount
some

a moderate amount Question Number Antecedent 1 Antecedent 2 Consequent
1 none to very little none to very little
2 none to very little some
TABLE I 3 none to very little a moderate amount
PROCESSEDSURVEY RESULTS ORDEREDLABELS 1 mone 1o very little o Targe amount
— 5 none to very little | a maximum amount
No. Range Label Means Standard Deviations 3 some mone to very little
Start (a) | End (b) | Start {0,) | End (g3) 7 some some
1 none to very little 0 1.9850 0 0.8104 8 some a moderate amount
2 some 2.5433 5.2500 0.9066 1.3693 9 some a large amount
3 | a moderate amount 3.6433 6.4567 0.8842 0.8557 10 some a mazimum amount
4 a large amount 6.4833 | 8.7500 0.7484 0.5981 11 @ moderate amount | none to very little
5 | a maximum amount | 8.5500 10 0.7468 0 12 a moderate amount some
13 @ moderate amount | a moderate amount
14 a moderate amount a large amount
6 i i i i 15 a moderate amount | a mazimum amount
16 a large amount none to very little
a maximum amount 17 a large amount some
5+ -— - 18 a large amount a moderate amount
19 a large amount a large amount
20 a large amount a mazimum emount
a large amount ~ -
21 a mazimum amount | none to very little
4r T o ) 22 a mazimum amount some
23 a mazimum amount | ¢ moderate amount
a moderate amount 24 a mazimum amount a large amount
3r -=- -=- - 25 a mazimum amount | a mazimum amount
some TABLE IV
er - 1 HISTOGRAMS OFEXPERT RESPONSESABOUT CAC. 30 NETWORK EXPERTS
ANSWERED THEQUESTIONS NVL STANDS FORNONE TOVERYLITTLE;
none to very little S STANDS FOR SOME, MOA STANDS FORA MODERATEAMOUNT, LA
| p— - STANDS FORA LARGE AMOUNT, AND MAA STANDS FORA MAXIMUM
AMOUNT. THE ENTRIES IN THE SECOND—SIXTH COLUMNS CORRESPOND TO
THE WEIGHTS w!, . .., w), RESPECTIVELY
Oo 2 4 6 8 10 Rule Number () [ NVL [ S [ MOA | LA | MAA c;lq C}w
1 0 1 0 0 20 [8.9331 | [8.7411, 9.1224
Fig. 6. All five labels, their intervals and uncertainty bands (dashed lines). 2 0 1 2 5 22 | 8.4066 | [8.2010, 8.6101
3 0 0 1 6 23 8.6591 | [8.4622, 8.8539
. . . . . 4 0 0 5 15 10 7.6572 | [7.4346, 7.8790
randomized in the actugl survey, but are shovyn in their ne = T 3 10 6 | 6.666 | 641126 6130
ural order for the convenience of the reader). Thirty respondet 6 0 111 6 |13 10 |7.4558 | [7.2258, 7.6850
completed the survey, and their results are shown in Table Iv 7 0 | 1] 11 | 10] 8 |6.9324]][6.6889,7.1755
8 0 2 14 12 2 6.2556 | [5.9926, 6.5190
: - ot - 9 0 [4] 11 [15 0 ]6.1715 | [5.9022, 6.4415
B. Representing the Linguistic Labels Using MFs o T o T 5 0 153726 50754 56680
We used trapezoidal MFs to represanhe to very littleand i; g ‘1’ i; 1: ; gg?ﬁg 23‘;33 ggggg
a maximum amounand triangle MFs to _represessthmea mod- 3 0 T5 T T3 0 {59700 | [5.6934 6.2475
erate amountanda large amoun{see Fig. 7). 1 5 T7 T3 | 8 0 53258 | [4.0383, 5.5143
For the linguistic labelssome a moderate amountand a 15 5 |18] 7 0 0 |3.8033 [ [3.4748, 4.1335
large amountthe mean values of their interval end-points ar 16 0 |91 9 121 O |57539][5.4632 6.0456
.. . R 17 3 11 6 10 0 5.1336 | [4.8417, 5.4267
a andb, and, the standard deviation (std) of their left end-poir R 2 18] 15 | 5] 0 |40401 ] [4.6432, 5.2383
is o, and, the std of their right end-pointdg. The three break 19 8 |13] 7 [ 3| 0 ]4.0030][36951,4.3122
points of a triangle type-1 MF were then located@at- o, 0), 20 8 [19] 38 J 0] 0 |3.3844](3.0620,37086
. .. 21 1 15 9 5 0 4.8379 | [4.5172, 5.1601
((a+1b)/2,1), and(b + oy, 0). For the linguistic labelaone to 3 T 7 T 5 10 42936 | [3.9968. 4.5018
very little anda maximum amounthe four break points in their 23 8 |18] 4 | 0| 0 |34174][3.0079,3.7386
trapzoidal type-1 MFs were located(at— o, 0), (a, 1), (b, 1), 2 12 |16) 2 |0 0 |29688)[26672 32720
25 26 3 1 0 0 1.5967 | [1.3756, 1.8186

and(b + o3, 0). We show these type-1 MFs in Fig. 7 as heav,
dashed lines.

There are uncertainties associated with the break points (i@.¢ — 20, instead ofa — o,. These uncertainties cannot be
a— o, andb + o) of triangle MFs, e.g., why not use— 0.50, captured using type-1 fuzzy sets; however, they can be by using
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Fig. 7. Type-2 MFs used to represent the five linguistic labels. The footpri ) - )
of uncertainty are shown shaded, and the heavy dashed lines denote the ty 5,9-'18' Type-1 FLS for CAC. The confidence of accepting the gditty , z2),

MFs used to represent the five linguistic labels. ersuse, andzs.

. . 1,...,5). The centroids of the five type-1 sets depicted in Fig. 7
type-2 fuzzy sets. In type-2 MFs, the footprints of uncertamtXreCl’i)1 1811, 2 — 4.0507. ¢3 — 2%402 o= 7p5666 andg

are obtained by specifying upper and lower MFs for each fuzéy = 9.1015. To illustrate the use of (21), note, for example,

set. Letp denotea fraction of uncertaintyi.e.,0 < p < 1. Then that
we construct the footprints of uncertainty as follows. )
« For the triangle MFs with uncertain break points, the break S e +6¢® + 13¢* + 10¢° e 22)
points of the upper MF aréa — (1 + p)oa,0), ((a + e 1+6+13+10
Ib)/2’ b, anFi(b +(1+ p)oy, 0), and the break pglnts " Al 25 clavg values are listed in Table IV.
((;WHJ;AUFS(S(G = (1=p)0a,0), ((a+0)/2,1), and(b + For every input(z;, z2), the output is computed using (14),
IR CA AN . . . with ¢!, replacingce:. For example (see Fig. 7), when the
) Eor tl? € tratpzpldal MFSMV'\:”th unEerIam breal:) pomti, thf?‘nput is>g< = [3, 6], two subsets (the second and third) are fired
reak points in upper are: — (1 4 p)os, 0), (a for 1 = 3, and their firing degrees are 0.6032 and 0.1052, re-
poa; 1), (Z;era‘“ 1), and(b+ (1+p)os, 0), and the break spectively, and, three subsets (the second, third, and fourth) are
points in lower MFs i — (1 — p)oa,0), (a + poa. 1) fireq for 2, = 6, and their firing degrees are 0.2275, 0.5801,
_ (b— P 1), and(? * (1 = pow, 0_)' ~and 0.1409. Consequently (as determined from Table I11), rules
Fig. 7 depicts the footprint of uncertainty for= 0.5. In this 7,8, 9, 12, 13, and 14 are fired, with firing degrees 0.1372
paper, we usg = 0.5 to illustrate our design of a type-2 FLS ¢ 032 x 0.2275), 0.3499, 0.0850 0.0239, 0.0610, and 0.0148,

and CAC decision boundaries. respectively. The defuzzified output is [using (14)B,6) =
S 6.3447.
C. Survey Processing Using Type-1 FLS By repeating these calculations far; € [0,10], we ob-

In our approach to forming a type-1 rule base, we choset@in a hypersurfacg(x;, z2), as plotted in Fig. 8. Observe that
single consequent for each rule (for discussions on other ways:1, z2) is a monotonically decreasing function, because with
to use the consequent data, see [15]). To do this, we averagediieeincrease ofhe total aveage input rate of real-time voice
centroids of all the responses for each rule and used this average video trafficor the total aveageinput rate of nonreal-time
in place of the rule consequent centroid. Doing this leads to ruldata traffic the confidence of accepting the cdéicreases.
that have the following form: _ _

R: IF the total aveage input rate of real-time voice and P- Survey Processing Using Type-2 FLS
video traffic(z) is F¢ andthe total aveageinput rate of Here, we adopt a similar strategy to the one in Section IlI-C.
the nonreal-time data traffi€z,) is 7, THEN the confi- Because all membership functions are now type-2, we create a

dence of accepting the cdl}) is wag type-2 FLS, which has rules of the form
where R': IF the total aveage input rate of real-time voice and
5 g video traffic(z;) is F and IFthe total aveageinput rate
- Eifl w;c 1) of the nonreal-time data trafficz,) is £, THEN the con-
e wl fidence of accepting the cally) is C/,,.
where
in whichw! is the number of people choosing linguistic label 3 ‘
for the consequent of rule(: = 1,...,5;1 = 1,...,25) (see ol — E?:} wjC"? (23)

Table 1V); and ¢ is the centroid of théth consequent sét = e Wl
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S denotes algebraic sum¢’ is the centroid of F*

(¢ = 1,...,5), andw! is the weight associated with the
ith consequent for thdth rule (see Table IV). The cen- 1o
troids of the five type-2 sets [computed using (11)] ar
C' = [0.9808,1.3820],C% = [3.6717,4.4320],C% = 8
[4.7501,5.3314], C* = [7.3418,7.7915], and C° =
[8.9159,9.2842]. Since eachC' is an interval type-1 set, o
(23) can be computed using Theorem 1. For example, 1;—'5' 4
rule 9, from Table IV the number of people choosing the fiv

linguistic labels are 0, 4, 11, 15, 0. So we calculafg, as 2
9 4xC?+11xC3*+15x C* od__
Croe = a .
& 4411415 ]
= [5.9022, 6.4415]. (24)

All CL,, are listed in Table IV.

We show the calculation of the type-reduced setzfor=
[3,6]. Forz; = 3 (see Fig. 7), three subsets are firdd (= Fig. 9. Type-2 FLS for CAC. The confidence interval of accepting the call,
NVL, F», = S, andF3 = MOA), and their firing degrees areY (w1, v2), versusr; andz..

[0,0. 247o] [0.5037,0.6695], and [0,0.2499], respectively; for

zo = 6, three subsets are also flreEQ( F3, andF, = LA) 10 '
and their firing degrees ar®, 0.3827], [0.4822, 0.6469], and
[0,0.2834]. Consequently, nine rules are fired whose antecede

pairs are

(F17F2)7 (F17F3)7 (F17F4)7 (F27F2)7 (F27F3)7
(FQaF4)a (F3aF2)a (F3aF3)a and(F3aF4)

ice and video traffic

,rules 2, 3,4,7,8,9, 12, 13, 14 are fired (from Table III)
W|th firing intervals computed using (18) and (19). For example>
the firing interval % = [£°, f®], for R® is

% 3r —— Boundary from type—1 FLS " |
iS — H~28 (371) % Hfré% ($2) o ol - - Boundarigs from type-2 FLS| T~~~
= 0.5037 x 0.4822 = 0.2429 (25) 4k i
and o , , , ,
= Ps (1) % Ps (z2) ° 2 Non—‘:eal—time datastraffic ° "
= 0.6695 x 0.6469 = 0.4331. (26)

Fig. 10. Decision boundary generated by the type-1 FLS, and decision

. iy he type-2 FL
Similarly, we can compute the other firing intervalgPoundaries generated by the type-2 FLS.

F? = [0,0.0947], F* = [0,0.1601], F* = [0,0.0701],
F7 = [0,0.2562], F° = [0,0.1897], F'? = [0,0.0956], E. CAC Decision Boundaries

I3 =10,0.1617], andF** = [0,0.0708]. CAC is a binary decision problem—accept or rejecttis®
The type- reduced output, obtained using the procedure giv§hfidence of accepting the call the confidence of rejecting
in the Appendix , the call = 10. A call will be accepted ithe confidence of ac-

cepting the call> 5. Itis then very straightforward to obtain the

Y(3,6) = [0(3,6), 5(3,6)] decision boundary fathe confidence of accepting the call5.

/ / / / E 2ui=2,..14Cili cifi For the type-1 FLS, the decision boundaryis,z2) = 5,
3 » =214 Siss aafi as plotted in Fig. 10 (solid line). When a call occurs with input
[5.7338, 7.6942] (27) rate of traffic(z,, z,) below the decision boundary, then it will

be accepted; similarly, if it occurs above the decision boundary,

wherec; € C;Vg, andf; € F' (i =2,3,4,7,8,9,12,13,14). it will be rejected. As we see, the decision boundary generated
Similarly, we can comput& (x1,x2) for any value(zy,z2) from type-1 FLS is a hard-threshold.

in the measurement domain, to obtain the redidn;, z2) be- The decision boundaries for the upper and lower hyper-
tween the two hypersurfaceg(z1,z2) andy,.(z1,22) in the surfaces of the type-2 FLS output can be represented as
measurement domairmy € [0,10] andzo € [0,10] (Fig. 9). wi(x1,22) = 5andy,.(z1,x2) = 5, which are plotted in Fig. 10
Note thatY (x1,z2) C [0,10] for any [z1, x2]. Observe, from using dashed lines. If a designer wishes to increase the band-
Fig. 9, thaty;(z1,22) andy,.(z1,22) are monotonically de- width utilization, he can choose the upper decision boundary.
creasing functions. When a call occurs with input rate of traffie; , z») below the
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upper decision boundary, then it will be accepted. If, on thehere> € R andw; € [0,1]forl = 1,..., M. If eachz
other hand, the designer wishes to decrease the cell-loss-rioeplaced by an interval type-1 sBf C R and eachw; is
(CLR), he can choose the lower decision boundary. If the deeplaced by an interval type-1 98} C [0, 1], then the extension
signer wishes to achieve a compromise in performance betweéif28), according to (8), is

bandwidth utilization and CLR, he can choose any decision

boundary between the upper and lower decision boundaries. Y(Zi,oo s Zm, Wi, W)
We see, therefore, that a type-2 FLS provides a soft decision Zl 1 Wy
boundary that depends on the preference of the designer; it s o wns l lun

can be any decision boundary between the lower and upper
ici i ylvf% (29)

decision boundaries.

The lower and upper decision boundaries plotted in Fig. 1herew; € W; andz € Z; forl = 1,...,M, and all the
are for the footprint of uncertainty in Fig. (» = 50%). By integrals denote logical union.
varying p, we could get families of intervals, each labeled with | [15] and [17] we developed a computational procedure to
different p. A designer could make a choice by “thinking” incompute the weighted averagg which itself is an interval
terms of a level of uncertainty. Note that= 0 corresponds to type-1 set. We restate the procedure here. Note that, dince

the type-1 FLS case. is an interval type-1 set, only two sets of computations are re-
quired, one for each end point of the domain intervalkofy,
IV. CONCLUSIONS AND FUTURE WORKS andy,..
The type-2 FLS-based CAC method has the following fea- L8t Zt = [mu — st mu + s and Wi = [he — Ag, by + Ag]
tures. forl =1,..., M.y, can be obtained by following the iterative

1) it combines the input rate of real-time voice and Videﬁrocedure we seh = my + s (I = 1,..., M), and, without
0ss of generality, assume that the are arranged in ascending
traffic and nonreal-time data traffic in the decision of con-

order,i.e.z1 < 20 < -+ < zpm.
nection admission; 1 2 = S 2uM

2) it combines the experiences from lots of experts, so that 1) Setwr = hifori=1,..., M, and compute = y(m: +
an acceptable decision boundary can be obtained; 1y + smy b har) using (28).
3) it provides an interval decision, so that a soft-decision can 2) Findk (1 <k < M —1) such that, <5 < 2.
be made based on a design tradeoff between cell loss ratiod) S€twi = u — Ajfor i < k andw; = hy + A for
and bandwidth utilization. I 2 k+1,and computes” = y(my + s1,...,mar +
Recently, it has been observed that video/voice/data traffic SM_’hl_Al’ o= Al F AR, - har A
have self-similarity [11], [20], [35]. According to Stallings [29], using (28). _ _ _
“Self-similarity is such an important concept that, in a way, it is 4) Checkifs’ = 5. If yes, stop.5” is the right end-point of
surprising that only recently has it been applied to data com- Y - If no, go to step 5.
munications traffic analysis.” Further, “Since 1993, a number °) SetS equal toS’. Go to step 2.
of studies reported in the literature have documented that thefhe left end-point of the domain interval of
pattern of data traffic is well modeled by self-similar processés(Z1, - - Zy; Wi,..., W), wi, can be obtained by using
in a wide variety of real-world networking situations.” Sucit Procedure similar to the one described above. Only two
self-similarity is quite common in both natural and human-mad&anges need to be made: 1) we mustzget= m; — s, for
phenomena [29] such as the distribution of earthquakes, océaf 1.--..M and 2) in Step 3, we must set = h; + A;
waves, fluctuation of the stock market. These kinds of time-s& [ < k andw; = h; — A; forl > k + 1, to compute the
ries have been successfully forecasted using the Box—Jenkifgighted averages’ = y(my — si,...,muy — sy by +
method [1]. We have used type-2 FLSs for time-series foréui, - -« + Ap, hapr — Apgr, o by — D).
casting [21]. Video/voice/data traffic is like a time-series; so, This computational procedure can be used to compute the
we can also use a type-2 FLS to forecast the future input ratelype-reduced set of an interval type-2 FLS [see (20)], as well

traffic for dynamic bandwidth allocation and CAC. as to compute the centroid of an interval type-2 set [see (11)].
We have demonstrated how a type-2 FLS can be used in dethe latter case, all thes are crisp, so that, we set= 0 for
cision making; so, combining all the control problems in ATM = 1,..., M.
networks, such as policing, rate control, buffer management,
traffic prediction into a type-2 fuzzy logic coordinating system ACKNOWLEDGMENT
is also a very promising research area. The authors would like to thank the reviewers of the first ver-
sion of this paper for their very helpful suggestions, most of
APPENDIX which we incorporated into this version.
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