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Abstract - Interval type-2 fuzzy sets (T2 FS) play a central
role in fuzzy sets as models for words [6] and in engineering
applications of T2 FSs [5]. These fuzzy sets are characterized by
their footprints of uncertainty (FOU), which in turn are
characterized by their boundaries—upper and lower member-
ship functions (MF). The centroid of an interval T2 FS [3],
which is an interval T1 FS, provides a measure of the
uncertainty in the interval T2 FS. Intuitively, we anticipate that
geometric properties about the FOU, such as its area and the
center of gravities  (centroids) of its upper and lower MFs, will
be associated with the amount of uncertainty in an interval T2
FS. The main purpose of this paper is to demonstrate that our
intuition is correct and to quantify the centroid of an interval T2
FS with respect to these geometric properties of its FOU. It is
then possible to formulate and solve inverse problems, i.e. going
from data to parametric T2 FS models.

I. INTRODUCTION

Recently, Mendel [6] proposed a fuzzy set (FS) model for
words that is based on collecting data from people—person
membership functions (MFs)—that reflect intra- and inter-
levels of uncertainties about a word, in which a word FS is
the union of all such person FSs. The intra-uncertainty about
a word is modeled using interval type-2 (T2) person FSs, and
the inter-uncertainty about a word is modeled using an
equally weighted union of each person’s interval T2 FS.
Because an interval T2 FS plays such an important role in
this model as well as in engineering applications of T2 FSs
(e.g., [5]), we need to understand as much as possible about
such sets and how they model uncertainties.

Recall that an interval T2 FS ˜ A  is characterized as [5],
[8]:

            ˜ A = 1 (x, u)
u∈J x ⊆[ 0 ,1]
∫

x∈X
∫ = 1 u
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∫
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x∈X
∫ (1)

where x, the primary variable,  has domain X ; u , the
secondary variable, has domain Jx  at each x ∈X ; Jx  is
called the primary membership of x; and, the secondary
grades of ˜ A  all equal 1. Uncertainty about ˜ A  is conveyed by
the union of all of the primary memberships, which is called
the footprint of uncertainty (FOU) of ˜ A , i.e.
                            

  
FOU( ˜ A ) = U

x∈X
Jx (2)

The upper membership function (UMF) and lower
membership function (LMF) of ˜ A  are two type-1 MFs that
bound the FOU (e.g., see Fig. 5). The UMF is associated with
the upper bound of FOU( ˜ A )  and is denoted µ ̃  A 

(x ) , ∀x ∈ X ,
and the LMF is associated with the lower bound of FOU( ˜ A )
and is denoted µ ˜ A 

(x ) , ∀x ∈ X , i. e.

                          µ ̃  A 
(x ) ≡ FOU( ˜ A )     ∀x ∈X (3)

                          µ ˜ A 
(x ) ≡ FOU( ˜ A )    ∀x ∈X (4)

The centroid of an interval T2 FS [2], which is an interval
T1 FS, provides a measure of the uncertainty in the interval
T2 FS. Intuitively, we anticipate that geometric properties
about the FOU, such as its area and the center of gravities
(centroids) of its upper and lower MFs, will be associated
with the amount of uncertainty in an interval T2 FS.

The main purposes of this paper are to demonstrate that
our intuition is correct, to quantify the centroid of an interval
T2 FS with respect to these geometric properties of its FOU,
and to then formulate and solve inverse problems, i.e. going
from data to parametric T2 FS models.

II. CENTROID OF AN INTERVAL TYPE-2 FUZZY SET

Recall that the centroid, C ˜ A 
, of the interval T2 FS ˜ A  is an

interval set cl, cr[ ]  that is completely specified by its left and
right end-points, cl  and cr , respectively, i.e. [3], [5]

               

  

C ˜ A 
= cl, cr[ ] = L

θ1∈J x1
∫ 1

xiθ i
i=1

N

∑

θi
i= 1

N

∑
θ N∈J xN
∫ (5)

In this equation, primary variable x has been discretized for
computational purposes, such that   x1 < x2 <L < xN .
Unfortunately, no closed-form formulas exist to compute cl
and cr ; however, Karnik and Mendel [3] have developed
iterative procedures for computing these end-points, and
recently Mendel [7] proved that given a FOU for an interval
T2 FS, one that is symmetrical about primary variable x at
x = m , then the centroid of such a T2 FS is also symmetrical
about x = m .  For such a FS it is therefore only necessary to



compute either cl  or cr , resulting in a 50% savings in
computation.

Before we summarize the Karnik-Mendel procedures in a
form that will be very useful to us, we must first justify the
use of the length cr − cl  as a legitimate measure of the
uncertainty of ˜ A . Wu and Mendel [9] noted that according to
Information Theory uncertainty of a random variable is
measured by its entropy [2]. Recall that a one-dimensional
random variable that is uniformly distributed over a region
has entropy equal to the logarithm of the length of the region.
Comparing the MF, µC (x) , of an interval FS C, where

                             µC (x) =
1, x ∈ cl ,cr[ ]
0, otherwise
 
 
 

, (6)

with the probability density function, pY (y) , of a random
variable Y, which is uniformly distributed over cl, cr[ ] , where

                      pY (y) =
1 cr − cl( ), y ∈ cl, cr[ ]

0, otherwise
 
 
 

, (7)

we find that they are almost the same except for their
amplitudes. Therefore, it is reasonable to consider the extent
of the uncertainty of the FS C to be the same as (or
proportional to) that of the random variable Y. Since the
centroid of a T2 FS is an interval set, its length can therefore
be used to measure the extent of the T2 FS’s uncertainty.

In the sequel, when we use sampled values of µ ˜ A 
(x )  and

µ ̃  A 
(x ) , namely µ ˜ A 

(x i )  and µ ̃  A 
(xi ) , where i = 1, 2,...,N , we

shall simplify our notation, i.e., without loss of generality
                            µ ˜ A 

(x i ) ≡ µ i
     i = 1,..., N (8a)

                            µ ̃  A 
(xi ) ≡ µ i    i = 1,..., N (8b)

The Karnik-Mendel iterative procedures for computing cl
and cr  can be interpreted for the purposes of this paper as
follows [9]. Define c ( L )  and c ( R ) , for 0 ≤ L, R ≤ N , as

          c ( L ) ≡ xiµ i
i=1
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(9)

          c ( R ) ≡ xi µ i
i=1

R

∑ + x j µ j
j= R +1

N

∑
 

 
 
 

 

 
 
 

µ
i
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R

∑ + µ j
j= R +1

N

∑ (10)

The end-points cl  and cr  for the centroid of an interval T2
FS [given by (5)] are the minimum of all c ( L )  and the
maximum of all c ( R ) , respectively, i.e.1

          

cl = min
0≤ L ≤N

c ( L){ } = c ( L* )

  = xi µ i
i=1
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∑ + x j µ j
j= L*+1
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∑
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(11)

where
                                   L* = arg min

0≤ L≤ N
c( L ){ } (12)

and

                                                  
1 These theoretical facts are established in [3] and [5].

         

cr = max
0≤ R≤ N

c (R ){ } = c ( R*)

   = xi µ i
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∑ + x jµ j
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(13)

where
                                  R* = arg max

0≤ R ≤N
c ( R ){ } (14)

The solutions of (12) and (14), L*  and R* , are obtained
using the Karnik-Mendel iterative procedures, the details of
which are not needed in the rest of this paper.

Because closed-form formulas do not exist for cl  and cr ,
it is impossible to study how these end-points explicitly
depend upon the area of the FOU and the centroids of the
upper and lower MFs of the FOU. The approach taken in the
rest of this paper is to obtain bounds for both cl  and cr , and
to then examine the explicit dependencies of these bounds on
the geometric properties of the FOU.

III. BOUNDS ON cl  AND cr  FOR AN ARBITRARY FOU

Theorem 1:  The end-points, cl  and cr , for the centroid of
an interval T2 FS are bounded from below and above by
(Fig. 1)
                                      cl ≤ cl ≤ c l (15)
                                      cr ≤ cr ≤ c r (16)
where
                               c l = min cLMF , cUMF{ }  (17)
                               cr = max cLMF ,cUMF{ } (18)

                           cLMF = xiµ i
i=1

N

∑ µ
i

i=1

N

∑ (19)

                           cUMF = xi µ i
i=1

N

∑ µ i
i=1

N

∑ (20)

cl = c l −
µ i − µ

i( )
i=1

N

∑

µ i
i=1

N

∑ µ
i
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N

∑
×

µ
i

i=1

N

∑ (xi − x1 ) µ i
i=1

N

∑ (xN − xi )

µ
i

i=1

N

∑ (xi − x1 ) + µ i
i=1

N

∑ (xN − xi )
(21)

c r = cr +
µ i − µ

i( )
i=1

N

∑

µ i
i=1

N

∑ µ
i

i=1

N

∑
×

µ i
i=1

N

∑ (xi − x1 ) µ
i

i=1

N
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µ i
i=1

N

∑ (xi − x1 ) + µ
i

i=1

N

∑ (x N − xi )
(22)

Proof: Provided in the journal version of this paper.

Fig. 1.  End-points (X) of the centroid of ˜ A  and the lower and
upper bounds (|) for the two end-points.
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Next, we re-express the uncertainty bounds c l − cl  and
c r − cr , that are obtained from (21) and (22), respectively, in
a way that provides enormous insights into these intervals.

Theorem 2: Let AUMF , ALMF , AFOU , cLMF  and cUMF
denote the area under the upper MF, the area under the
lower MF, the area of the FOU (note that AFOU = AUMF
−ALMF ), the centroid of the lower MF, and the centroid of the
upper MF. Then

       c l − cl = AFOU

(c LMF − x1 )(xN − cUMF )
ALMF (cLMF − x1 ) + AUMF (xN − cUMF )

(23)

       c r − cr = AFOU

(cUMF − x1 )(xN − cLMF )
AUMF (cUMF − x1 ) + ALMF (x N − cLMF )

(24)

Proof: Multiply the numerator and denominators of (21)
and (22) each by three Δx  terms, and then take the limit as
Δx→ 0 . The results in (23) and (24) follow immediately. ■

Comment 1: Theorem 2 demonstrates that the bounding
intervals (uncertainty intervals) for the end-points of the
centroid of ˜ A  are indeed expressible in terms of geometric
properties of the FOU. It has not made use of any a priori
geometric knowledge about the FOU, e.g., the FOU is
symmetric; hence its results are most general. Because it has
not made use of a priori geometric knowledge, its results may
be improved upon by making use of such information. We
explore this further in Section V. ■

Theorem 2 lets us obtain many new results about the
uncertainty bounds.

Corollary 1: c l − cl  and c r − cr  are shift-invariant.
Proof: The proof for c l − cl  focuses on the two factors

(cLMF − x1 ) and (xN − cUMF )  which appear in (23). When the
FOU is shifted, x→ x +m  in which case x1 → x1 + m ,
xN → xN + m , cLMF → cLMF + m  and cUMF → cUMF + m .
Consequently, (23) remains unchanged when x→ x +m . A
similar argument demonstrates that (24) remains unchanged
when x→ x +m . ■

Comment 2: The results in Corollary 1 mean that we
obtain the same centroid bounds for a specific FOU
regardless of where that FOU is located with respect to its
primary variable (x). Of course, we would have hoped/
expected this to be true, and in this corollary our hope/
expectation is mathematically proved. Because of this shift-
invariance we can locate the FOU anywhere we choose to on
its x-axis. ■

Mendel [4], [5] has collected interval end-point data from
people about words2, and has observed that the uncertainty

                                                  
2 A group of students were asked the question: “Below are a number
of labels that describe an interval or a ‘range’ that falls somewhere

intervals about the left and right-hand end-points are unequal.
A non-symmetrical FOU can provide such unequal intervals,
whereas (see Corollaries 4 and 5) a symmetrical FOU cannot.

For a non-symmetrical FOU, cUMF ≠ cLMF , and it is useful
to express both cUMF  and cLMF  as functions of how much they
each depart from the centroid, (x1 + xN ) 2 , of a symmetrical
MF. Letting δUMF  and δ LMF  denote the departures from
symmetry for cUMF  and cLMF , respectively, we can express
cUMF  and cLMF  as:
                           cUMF = x1 + xN( ) 2 + δUMF (25)
                            cLMF = x1 + xN( ) 2 + δ LMF (26)
Because x1 ≤ cUMF ≤ xN  and x1 ≤ cLMF ≤ xN , it follows from
(25) and (26) that δUMF  and δ LMF  are constrained as
                    − xN − x1( ) 2 ≤ δ LMF ≤ xN − x1( ) 2 (27)                       
                    − xN − x1( ) 2 ≤ δUMF ≤ xN − x1( ) 2 (28)

Corollary 2: An alternative way to express c l − cl  and
c r − cr  is:

 c l − cl = AFOU

2ALMF

(x N − x1 ) − 2δUMF

+
2AUMF

(x N − x1 ) + 2δ LMF

 

 
 

 

 
 

− 1

(29)

 c r − cr = AFOU

2AUMF

(xN − x1 ) − 2δ LMF

+
2ALMF

(xN − x1 ) + 2δUMF

 

 
 

 

 
 

−1

(30)

Proof: Substitute (25) and (26) into (23) and (24).■

Corollary 3: For an interval T2 FS c l − cl  is greater
than, equal to, or less than  c r − cr  if

  δ LMF

ALMF (xN − x1 )
2 − 4δ LMF

2[ ]

>

=

<

δUMF
AUMF (x N − x1 )

2 − 4δUMF
2[ ] (31)

Proof: Eq. (31) follows from (29) and (30) and some
simple arithmetic manipulations. ■

Example 1: Special cases of (31) occur when: (1)
δ LMF > 0 > δUMF  in which case c l − cl > c r − cr  (see Fig. 2);
and, (b) δ LMF < 0 < δUMF , in which case c l − cl < c r − cr  (see
Fig. 3). ■

It is interesting to study (31) to establish curves above
which the > inequality is true and below which the <
inequality is true. After a lot of analysis, one can show that
c l − cl > c r − cr  if:  (a) Δ LMF > 0   when δUMF = 0 , or (b)

                                                                                       
between 0 to 10. For each label, please tell us where this range
would start and where it would end.” This was done for two
collections of 16 and five labels using two different groups of
students. See Table 2-2 and Fig. 2-1 in [5] for a summary of results
for the 16 labels, and Table 2-3 for a summary of results for the five
labels.



Δ LMF >

−(1− 4ΔUMF
2 ) + (1− 4ΔUMF

2 )2 + 16 ALMF

AUMF

 

 
 

 

 
 

2

ΔUMF
2

8ΔUMF

ALMF

AUMF

 

(32)
when δUMF ≠ 0 . In (32), ΔUMF ≡δUMF / (xN − x1 ) and
Δ LMF ≡ δ LMF / (x N − x1 ) . For c l − cl ≤ c r − cr , change the
inequality in (32) from > to ≤. Plots of (32) for δUMF ≠ 0  and
five values of ALMF / AUMF  are depicted in Fig. 4. Above each
curve, c l − cl > c r − cr , whereas below each curve
 c l − cl < c r − cr . How to use these general results to design
or reconstruct a non-symmetrical FOU from data are topics
that are presently under study.

Fig. 2.  Non-symmetrical triangular FOU for which
δUMF  < δLMF

Fig. 3.   Non-symmetrical triangular FOU for which
δUMF  > δLMF .

V. BOUNDS ON cl  AND cr  FOR A SYMMETRIC FOU

Interval T2 FSs with symmetrical FOUs have been very
widely used by practitioners of T2 FSs (e.g., [4]). Simplifica-
tions to (23) and (24) occur for such FOUs.

Corollary 4: For a symmetrical FOU: (a) c l = cr = 0
and (b) c l − cl = c r − cr ≡ Δc  where
                       Δc = x1 AFOU ALMF + AUMF( )[ ] (33)

Fig. 4.  Universal curves of (38). Note that
ALMF ≡ AL  and AUMF ≡ AU

Proof: (a) Shifting the FOU so that it is symmetrical about
the origin, it is clear that for a symmetrical FOU,
cLMF = cUMF = 0 ; hence, c l = cr = 0  follows directly from
(17) and (18). (b) Substituting cLMF = cUMF = 0  into (23) and
(24), we find that:
            c l − cl = AFOU −x 1xN − x1ALMF + xN AUMF( )[ ] (34)

            c r − cr = AFOU − x1 xN −x1AUMF + xN ALMF( )[ ] (35)
For the shifted FOU, symmetry also means xN = − x1 ; hence,
(34) and (35) reduce to the same number
−AFOU x1 (ALMF + AUMF )[ ]. Because x1 < 0 , we take the
absolute value of c l − cl  and c r − cr  to obtain the results in
(33). ■

Comment 3: For a symmetrical FOU, because c l = cr = 0,
the results from our bounding analysis have degenerated into
an outer-bound set that bounds the centroid cl, cr[ ] , i.e.
                         cl, cr[ ]⊆ cl, c r[ ] = −Δc,Δc[ ] (36)
Such a set may be too conservative. ■

Comment 4: Corollary 4 cannot be used as is for a
symmetrical Gaussian FOU, because for such a FOU
x1 → ∞ . This represents yet another shortcoming of trying

to use general results for symmetrical FOUs. ■

Recall that the uncertainty bounds in Theorem 1 made no
a priori use of the symmetry of a symmetrical FOU. When we
do make use of such knowledge, we obtain:

Theorem 3: Let ˜ A  be an interval T2 FS defined on X whose
FOU is symmetrical about m ∈X . Let cHLMF  and cHUMF
denote the centroids of half of the (symmetrical) lower and
upper MFs, respectively, i.e.
                        cHLMF = xµ( x)dx

m

∞

∫ µ(x)dx
m

∞

∫ (37)
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                        cHUMF = xµ (x)dx
m

∞

∫ µ (x)dx
m

∞

∫ (38)
Then,

          cr = m +
(cHUMF − m)AUMF − (cHLMF − m)ALMF

AUMF + ALMF

(39)                                 

          c r = m +
(cHUMF − m)AUMF − (cHLMF −m)ALMF

2ALMF

(40)

and, by symmetry, cl = −c r  and c l = −cr . ■

The proof of this theorem is totally different from the
proof of Theorem 1, and will appear in the journal version of
this paper. It makes very heavy use of the symmetry of the
FOU.

Comment 5: When a symmetrical interval T2 FS ˜ A  is
shifted by Δm = ′ m − m  so that ˜ A  is now symmetrical about
′ m , then in (39) and (40), because ALMF  and AUMF  remain

unchanged, and cHUMF , cHLMF  and m  are all shifted by Δm ,
both cr  and c r  are also shifted by Δm . This again means that
c r − cr  and c l − cl  are shift-invariant (see Corollary 1);
hence, in the rest of this section we can focus on a
symmetrical interval T2 FS that is symmetrical about the
origin.

Corollary 5: For a symmetrical FOU, let
                  Δcnew = c r − cr = c l − cl (41)

where cr  and c r  are in (39) and (40), in which m = 0 . Then

                           Δcnew = c r
AFOU

ALMF + ALMF

(42)

Proof: This follows directly from (39) and (40). ■

Comment 6: It is instructive to compare (42) and (33). For
the rest of this paper, we shall refer to the results in (33) as
Δcold . Clearly Δcnew < Δcold  if c r < x1 . It is possible for
c r > x1 ; so, using our two sets of bounds, we are able to
conclude that

      Δc =
AFOU

ALMF + ALMF

min x1 , c r{ } = min Δcold ,Δcnew{ } (43)

Example 2: Here we determine Δc  for the symmetrical
triangular FOU depicted in Fig. 5. From the simple geometry
of this FOU, for which 0 ≤ h ≤ 1 , it follows that x1 = b ,
AUMF = b , ALMF = ha , cHUMF = b / 3 , cHLMF = a / 3  and
AFOU = AUMF − ALMF = b − ha  so that

                     Δcold = x1
AFOU

ALMF + AUMF
= b

b − ha
b + ha

(44)

                    Δcnew =  c r
b − ha
b + ha

=
b 2 − ha2

6ha
b − ha
b + ha

(45)

For Δcnew ≤ Δcold , we require

                         h ≥ b / a( )2

1+ 6b / a
(46)

From (44), (45) and (43), it is straightforward to study the
behavior of Δc  as a function of both h and b / a . ■

Example 3: Here we determine Δc  for the symmetrical
Gaussian FOU depicted in Fig. 6, for which

                      µ ̃  A 
(x ) = exp − x 2 (2σ 2 )( ) (47)

                      µ ˜ A 
(x ) = s exp − x 2 (2σ 2 )( ) (48)

where s ∈[0,1] . Note that Δcold = ∞ , so that Δc = Δcnew . It is
straightforward to show that AUMF = 2πσ , ALMF = 2π sσ ,
cHUMF AUMF = 2σ 2  and cHLMF ALMF = 2sσ 2 ; consequently,
AFOU = 2πσ(1− s)  and

                       cr =
2σ
2π

(1− s)
(1+ s)

(49)

                            c r =
σ
2π

(1− s)
s

(50)

                      Δc = σ
2π

(1− s)2

s(1 + s )
   ■ (51)

Fig. 5.  Symmetrical triangular FOU.

Fig. 6.  Symmetrical Gaussian FOU.

Example 4: Using the FOU in Fig. 6, it is possible to
solve an interesting inverse problem. Suppose that we have
collected interval end-point data from a group of n people for
a phrase (e.g., some), as described in footnote 2. For the
purposes of this example, we assume that the uncertainties
about the two end-points of this interval-data are the same.

x
-b b-a a

1

h

0

UMF
UMF

LMF LMF

x

u

1

s

0



The case when this is not true is currently under
investigation. Let x1 , x2 ,..., xn  denote the collected data for
one end-point, and xavg  and Δx  denote the sample average of
the n points and the length of the (1−α ) confidence interval
(which is proportional to the sample standard deviation of the
n points). We establish the following two reasonable design
equations:

                      xavg ≡ cr + c r( ) 2 (52)
                            Δx ≡ c r − cr (53)
Next, we determine the parameters of a FOU that satisfy

(52) and (53). To that end, we assume the FOU model of
Example 3, from which it is possible to solve uniquely for
FOU parameters s and σ  as:

                            s =
2xavg −Δx
2xavg + 3Δx

(54)

               σ = 2π
(2xavg + Δx)(2 xavg − Δx)

8Δx
(55)

What this solution means is: starting with interval data that
are collected from a group of people, we can compute the
parameters of the scaled Gaussian FOU in Fig. 6, such that
the centroid of this interval T2 FS is guaranteed to lie within
Δc = c r − cr . ■

To the best knowledge of the authors, Example 4
represents the first solution of an inverse problem for a T2
FS. It represents a combining of statistics ( xavg  and Δx ) and
uncertainty bounds for T2 FSs. In [6], Mendel coined the
term fuzzistics for the field of experimental fuzzy sets, i.e. the
field in which data are collected from people about MFs and
related issues are formulated and tested (e.g., [1]). This paper
and especially the results in this example illustrate some
aspects of type-2 fuzzistics.

VI. CONCLUSIONS

We have demonstrated that the centroid of an interval T2
FS provides a measure of the uncertainty in such a FS. The
centroid is a type-1 FS that is completely described by its two
end-points. Although it is not possible to obtain closed-form
formulas for these end-points, we have established closed-
form formulas for upper and lower bounds of the two end-
points. Most importantly, these bounds have been expressed
in terms of geometric properties of the FOU, namely its area
and the center of gravities of its upper and lower MFs. As a
result, for the first time it is possible to quantify the
uncertainty of an interval T2 FS with respect to these
geometric properties of its FOU.

Using the results in this paper, it is possible to examine
many “forward” problems, i.e. given a class of FOUs (e.g.,
triangular, trapezoidal, Gaussian) we can study the bounds on
the centroid as a function of the parameter uncertainties that
define the FOU.

It is also possible to examine “inverse” problems, i.e.
given interval data collected from people about a phrase, and

the inherent uncertainties associated with that data which can
be described statistically, we can see if it is possible to
establish a parametric FOU such that its uncertainty bounds
are directly connected to statistical uncertainty bounds.
Although we have provided a solution to this problem for one
FOU, obtaining solutions for other FOUs is an open issue that
is currently under study.

It is quite likely that we will need more quantitative
information about a FOU than just its centroid uncertainty
bounds if we are to go from uncertain data collected about
interval end-points to a unique FOU, because the centroid
uncertainty bounds are over-parameterized for some FOUs.
This suggests that higher-order moments be established for an
interval T2 FS, e.g., dispersion, skewness, and kurtosis. What
will be needed for these new uncertainty measures are
iterative methods for their computation (analogous to the
Karnik-Mendel iterative methods for computing the interval
end-points for the centroid of a T2 FS) and quantitative
uncertainty bounds for them (analogous to the results
presented in this paper for the centroid of a T2 FS). Once
these additional results have been developed, then we will be
able to establish whether or not it is indeed possible to go
from interval end-point data to a unique (non-symmetrical)
FOU and if so how to do this.

Connecting data and its uncertainties to a parametric FOU
for an interval T2 FS is analogous to estimating parameters in
a probability model, and, as is well known, the latter provides
a bridge between probability and statistics. We hope that the
material in this paper will be the start of much research in
providing a bridge between interval T2 FSs and type-2
fuzzistics, something that we believe is needed if computing
with words is to become a reality (e.g., [4], [6]).
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