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ABSTRACT

We consider travel time tomography problems involving detection of
high contrast, discrete high velocity lines. This results in a discrete
nonlinear inverse problem, for which traditional least-squares recon-
struction algorithms are not suitable, as they tend to result in oscil-
lations in the estimated values of the ray-path matrix. We propose
a new algorithm that provides a more stable reconstruction for high
contrast velocity scenarios. Our approach is based on using multi-
ple candidate discrete high velocity lines along with a probabilistic
mixture model that captures the likelihood of each of the lines. We
propose an iterative algorithm based on a graphical model that suc-
cessively updates the length and probability of these line structures.
Preliminary simulation results show that exact reconstruction can be
achieved in cases when the ground-truth lines are a subset of candi-
date structures.

Index Terms— Travel time tomography, Discrete tomography,
High contrast velocity model.

1. INTRODUCTION

Travel time tomography aims to reconstruct an interior slowness (re-
ciprocal of velocity) model based on measured first-arrival time be-
tween transmitters and receivers with known locations. The velocity
model characterizes the physical properties of the region where prop-
agation occurs. However, different from X-ray computed tomogra-
phy, the assumption of a straight line wave propagation model is usu-
ally a poor approximation in acoustical or electromagnetic tomogra-
phy, where the travel ray path bends according to the local propaga-
tion velocity. Without knowing the actual travel path ,reconstruction
of the slowness model becomes a nonlinear inverse problem. Many
iterative algorithms have been proposed based on iteratively solving
the linearized problem, and requires the slowness model is smooth
[?]. However the reconstructed image resolution becomes worse for
higher velocity contrast cases because linearized function is a poor
approximation [?].

In our work, we focus on nonlinear travel time tomography with
high contrast, discrete velocity values. Specifically we consider the
case where velocity has two discrete values: very high velocity in
line structures and low velocity in a homogeneous background. This
work can be extended by increasing the number of allowable dis-
crete values and by permitting discrete structures other than lines
to be used. Example scenarios where this formulation can be en-
countered arise in different fields, e.g., finding a fault zone in geo-
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physical acoustical tomography, discovering link failure in network
tomography [?], etc. Our initial motivation for this work comes from
problems in oil reservoir characterization. In this setting the perme-
ability of open fractures can be orders of magnitude higher than that
of surrounding tight rocks, providing fast pathways for fluid to flow.
Thus, travel time through a fracture (which could be modeled as a
line structure within the reservoir), is much faster than through sur-
rounding areas. Understanding these fractures is critical in reservoir
characterization [?].

We propose a method to estimate high velocity line (HVL) struc-
tures with discrete velocity. Based on Fermat’s principle, we show
that the actual travel path can be approximated by combining the
effect of a few line segments, which significantly reduces the com-
putation complexity to calculate the travel path. Traditional travel
time tomography techniques estimate spatial velocity or slowness
values for the area of interest by breaking it into cells and estimating
local velocity under smoothness constraints. Instead we consider
discrete structures (lines) on a homogeneous velocity background.
We start by defining a list of possible HVLs, and associate a proba-
bility to each of them. Then, based on the travel time constraints,
we iteratively refine the candidate HVL parameters (their length)
and re-weight their probabilities. Similar to the expectation maxi-
mization (EM) algorithm, in every iteration we lower the bound for
global mismatch function. The reconstruction results are presented
as a probability map showing which of the candidate HVLs are more
likely to represent the underlying structure of the system. Compared
to matrix inversion methods, our algorithm avoids oscillations in the
solution model. To the best of our knowledge most travel time to-
mography techniques focus on smooth low contrast cases and we
are the first to propose a discrete line-based solution for the high
contrast, discrete velocity case.

The rest of the paper is organized as follows. In Section 2 we
formulate the problem. Section 3 gives an overview of our proposed
approach for estimation. Simulation results and discussions are pre-
sented in Section 4. Section 5 concludes this paper.

2. PROBLEM FORMULATION

The travel time tomography problem can be modeled as a nonlin-
ear inverse problem. Lett be am−vector of the measured travel
time , t = (t1, . . . , tm)T , where ti is the travel time between
i-th transmitter-receiver pair andm is the total number of views
(transmitter-receiver pairs). In standard approaches for travel time
tomography, it is assumed that the model can be divided into cells
(in 2D) and the travel velocity inside one cell is constant. Denote
s the slowness model model,s = (s1, . . . , sn)

T for the n cells,
with sj representing the slowness of thej-th cell. Thens andt are



related by the travel pathm × n matrix M. The ray travel path
matrix M represents the cells through which the ray passes.M is
anm × n matrix whereMi,j represents the length of theith travel
path through thejth cell:

M · s = t (1)

Note that each solutions leads to a different matrixM and (??)
simply states the total travel time along thei−th path is the sum of
times spent in each cell along the path [?]. The inverse problem is
how to find the corresponding slowness models and ray-path matrix
M with measured travel timet. There are various of reconstruction
algorithms for continuous slowness models. We refer to [?] for a
good introduction to these techniques.

In this paper, we focus on scenarios where slownesss cannot be
assumed to be smooth. Instead our goal is detect discrete high ve-
locity lines (HVLs) in a homogeneous background. The iterative
linearized approximation method works poorly in this case [?]. As
an alternative we propose a new approach where the goal is to iden-
tify HVLs among a set of candidates. Unlike previously proposed
methods, continuous slowness values are assigned to 2D cells (under
smoothness constraints), here we operate on discrete lines, whose
length and probabilities are updated iteratively. We set travel time to
0 along HVLs and to1 per unit distance along surrounding homoge-
neous areas.

According to Fermat’s principle, the ray travel path correspond-
ing to observed travel time between a transmitter and a receiver is
the fastest one among all possible paths. Consider the example of
Fig. ??, where only one HVL is considered. In this case the ob-
served travel time should be of function of distance from transmitter
to HVL and from HVL to receiver (assume infinite velocity within
the HVL). As seen in Fig. ??, the fastest travel path “bends” to
follow the HVL. Thus, if we considering an HVL of known orienta-
tion, near a transmitter and a receiver (as in Fig.??), it is possible
to find (using simple geometry) the optimal line length to match the
measured travel time between the transmitter/receiver pair. Note that
this geometric approach can be extended to cases where more than
one HVL is considered.

As a starting point we define several HVL candidates between
each transmitter and each receiver, as illustrated in Fig. 2. In this
work, we assume the orientation and velocity associated to these
lines remains fixed, but their length and probability is updated by
the algorithm. Our goal is to estimate the length and probability for
all lines, so thatall travel times between pairs can be matched as
well as possible.

Fig. 1. Wave travel path with
high velocity channel.

Fig. 2. Candidates of high veloc-
ity channels.

3. PROPOSED ALGORITHM

Given the location of transmitter and receiver, our goal is to find
a solution of HVLs,Lλ to fit the measured travel timet. How-
ever, as in many inverse problems, the solutions may not be unique.
We propose an algorithm to find solutions with different probability
weights.

We start by defining the parameters. Assuming there arep trans-
mitters, q receivers, we will havem = p · q views. We denote
Ti(L1 ∪ L2) the travel time forith transmitter-receiver pair given
the presence of two high velocity linesL1, L2. For each transmitter-
receiver pair, we considerK possible HVL candidates with length
li(λ) and probabilityP (li(λ)), i = 1, . . . ,m, λ = 1, . . . ,K. with∑K

λ=1 P (li(λ)) = 1 (see Figure?? for an example). We initialize
the candidates in each pair so that each candidate has initial length
li(α) that satisfies the measured travel timeti, i.e.,li(α) are chosen
so thatTi(li(α)) = ti, α = 1, . . . ,K, with all candidates having
equal probabilityP (li(α)) = 1/K. Given that there arem views,
if we chose a candidate in each pair there would beKm possible
combinations of candidates to represent the global behavior, making
the search for the correct combination impractical.

Thus, instead of searching among combinations of multiple
HVLs our algorithm focuses on the interaction between two pairs
of candidates. We propose a graphical model [?], shown in Fig. 3
and develop a message-passing algorithm that alternates between
estimating the lengthli(λ) and reweighing the probabilityP (li(λ)),
for all the pairsi = 1, . . . ,m and candidatesλ = 1, . . . ,K. There
are two types of nodes in the graphical model: the candidate vari-
able nodes,li(α), which capture the lengthli(α) and probability
P (li(α)), the check nodes,Tk, which are used to compare estimated
travel timeTk with the measured travel timetk for kth travel path.

In first part of the iteration, check nodes send messages to vari-
able nodes to inform them of the best estimated lengths based on the
current information from candidate variable nodes. In the second
part of the iteration, candidate variable nodes process the incoming
messages and update their lengths and probabilities.

In order to quantify the interaction between the candidates in
different pairs, we define a mismatch functionφ(li(α), lj |tk), that
measures the expected value of the mismatch between estimated,Tk,
and measured,tk, travel times when considering the current length
estimateli(α) for a given candidate and considering the effect of all
existing candidates for another transmitter-receiver pair (lj(β)):

φ(li(α), lj |tk) =

K∑

β=1

‖Tk(li(α) ∪ lj(β))− tk‖ ∗ P (lj(β)) (2)

A key observation in our method is that the travel time function
is monotonic, i.e., increasing the number or length of HVLs means
the travel timeTk will strictly decrease:

Tk(li(α) ∪ · · · ∪ lm(ζ)) ≤ Tk(li(α) ∪ lj(β))

≤ tk (3)

Therefore
‖Tk(li(α) ∪ · · · ∪ lm(ζ))− tk‖

≥ ‖Tk(li(α) ∪ lj(β)− tk‖ (4)

Thus,the pairwise mismatch is a bound for the global mismatch. At
initialization time we have thatTk ≤ tk for all k, and at every itera-
tion we will decrease the length of the lines (increase travel time), in
order to approach measured times. As in the EM algorithm, although
we only consider partial structure (two transmitter-receiver pairs), in



Fig. 3. Graphical model of the 2 candidate and 2 measured time
case.

every iteration we will lower the matching error for the pairs, and
therefore that for the global solution.

Now we introduce the message passing through the graphical
model. q(Tk → li(α)) denotes the message from measured data
nodeTk to candidate variable nodeli(α). It gives the estimate of
lengthli(α) based on the measured datatk and pairwise interaction
with candidates in other pairs. In order to findq(Tk → li(α)), first
we calculateli(α|j, tk), the length forli(α) which leads to the low-
est average travel time error to matchtk when combining its effect
with that of all the line candidates for viewj, lj(β), for ∀beta.

For each of the other pairs,j = 1, . . . ,m, j 6= i, we solve the
minimization problem

li(α|j, tk) = argmin
li(α)

K∑

β=1

‖Tk(li(α) ∪ lj(β))− tk‖ · P (lj(β))

(5)
with the constraint

Tk(li(α) ∪ lj(β)) ≤ tk (6)

Repeating this step, we will have{li(α|j, tk), j = 1, . . . ,m, j 6=
i} that gives the estimated length when considering pairwise in-
teraction with all other candidateslj(β), j = 1, . . . ,m, j 6= i.
We have to choose the messageq(Tk → li(α)) to send from
{li(α|j, tk), j = 1, . . . ,m, j 6= i}. In order to choose the mes-
sage considerli(α|j, tk) andli(α|q, tk), and assumeli(α|j, tk) ≤
li(α|q, tk). Due to the monotonicity property mentioned earlier if
we compare two alternative global solutions that differ only in the
term li, we will have that (shorter HVLs mean longer propagation
times):

Tk(li(α|q, tk) ∪ · · · ∪ lm(ζ)) ≤ Tk(li(α|j, tk) ∪ · · · ∪ lm(ζ))

≤ Tk(li(α|j, tk) ∪ lj(β))

≤ tk (7)

so that
‖Tk(li(α|q, tk) ∪ · · · ∪ lm(ζ))− tk‖

≥ ‖Tk(li(α|j, tk) ∪ · · · ∪ lm(ζ))− tk‖ (8)

i.e., li(α|j, tk) leads to lower mismatch thanli(α|q, tk). There-
fore, li(α|j, tk) will be a better estimate for the lengthli(α) and
we choose the message based on travel timetk as:

q(Tk → li(α)) = min
j

li(α|j, tk).

Messages will flow from all check nodesTk, k = 1, . . . ,m to
the candidate variable nodeli(α). Next step will be to decide which
one of the incoming messages{q(Tk → li(α)), k = 1, . . . ,m} is
a better update forli(α). The li(α) needs to satisfy the constraint
of (??) for all k = 1, . . . ,m. Because shorter length corresponds
to longer travel time, if we chooseli(α) ≥ q(Tk → li(α)), this can
guarantee the travel time is smaller thantk. Therefore, we choose
li(α) = max

k
q(Tk → li(α)) as our new update.

After we update the length of the candidate variable node, we
want to reweigh the probability of each candidate. We need to know
which measured datatk determines the update. Let

r = argmax
k

q(Tk → li(α)) (9)

r is the pair index that represents which travel time datatr restricts
the length ofli(α). This pair should give the most information
aboutli(α). We reweigh the probability of each candidateP (li(α)),
which is inversely proportional to the mismatch function.

P (li(α)) ∝
1

φ(li(α), lr|tr) + δ
(10)

Theδ term is added to help the stability.
After reweighing probability, we also need to check the validity

of the solution. For allk = 1, . . . ,m, if Tk(li(α)) < tk, set the
probability

P (li(α)) = 0.

The reason we set the probability to zero is ifTk(li(α)) < tk
is adding another line always decrease the travel time. The global
structureTk(li(α)∪ · · · ∪ lm(ζ)) will go further from the measured
time tk.

Finally, we normalize the probability

K∑

α=1

P (li(α)) = 1

The algorithm is stated below:
1: Set the iteration numberI = 0.
2: For every node of travel timeTk, calculate the messageq(Tk →

li(α)) send to nodeli(α). For each of the other pairs,j =
1, . . . ,m, j 6= i, solve the minimization problem (??) to get
li(α|j, tk).

3: Set the message send from nodeTk to li(α) as

q(Tk → li(α)) = min
j

li(α|j, tk) (11)

4: In the candidate variable node, with all the messages send from
every nodeTk, k = 1, . . . ,m, choose the length update by

li(α) = max
k

q(Tk → li(α)) (12)

And letr = argmaxk q(Tk → li(α)).
5: Check the validity: For allk = 1, . . . ,m,
6: if Tk(li(α)) < tk then
7: Set the probabilityP (li(α)) = 0.
8: else
9: Reweigh the probability of each candidateP (li(α)) by (??),

which is inversely proportional to the mismatch function.
10: Normalize the probability

∑K

α=1 P (li(α)) = 1.
11: Go to step 2 until reach the maximum number of iterationsImax.



Our algorithm is a heuristic search on graphical model. In step
2, we try to find the messageli(α)(k → i(α)) , sending from node
Tk to li(α). This gives the ’belief’ of howli(α) should be depending
on the datatk. If we look at all of possible combinations, it will be
Tk(li(α)∪ · · · ∪ lm(ζ)). Since it will not be practical to consider all
theKm−1 combinations, instead, we consider only the pairwise in-
teractionTk(li(α) ∪ lj(β)), j = 1, . . . ,m and update partial struc-
ture. Similar to the EM algorithm, every iteration we choose new
estimated length and probability of candidates to decrease the local
mismatch function. ¿From (??), we can easily see the local mis-
match is a lower bound for global mismatch. Therefore, we expect
the global mismatch function will decrease through iterations.

4. SIMULATION RESULTS

In our simulation, we set the2D testing region with64 ∗ 32 blocks
of homogeneous background. The travel time data has 25 ray paths,
including5 × 5 from bottom to top. The transmitters and receivers
are uniformly located in the lower and upper boundary. Each travel
path has3 possible high velocity line candidates.

In the first experiment, the candidates contain the ground truth,
but not for second experiment.

The result should be read as a probability map. The lighter col-
ored regions correspond to a higher probability that a high velocity
region is present. For the first experiment, the result converges to ex-
actly the true model. Our algorithm successfully picks the right can-
didate in iterations. As we expect, the mean square error decreases
in each iteration even though we only consider pairwise interactions.
In the second experiment, the true model does not belong to the set
of candidates. Therefore, our algorithm will try to approximate the
solution by the given set of candidates. The result should be viewed
as the combination of different possible solutions. We list two pos-
sible solutions from estimated results. Because we only consider
the interaction between two high velocity lines, the reconstruction
performance is affected by several factors, such as number of candi-
dates, complexity of underlying structure, number of transmitter and
receivers, and that we can do well in some of these cases.

Adding more number of candidates will give a larger set of ba-
sis to approximate the ground truth. The price we pay is the com-
putational complexity. Our algorithm has a cost ofO(m3K2), sig-
nificantly lower than that of the combinatorial approach,O(Km).
While ours is a heuristic approach it does provide encouraging re-
sults in simple tests. We will consider more complex situations in
future work.

5. CONCLUSION

The main purpose of this paper is to develop a new algorithm to
reconstruct high contrast discrete velocity model in travel time to-
mography. We take advantage of high velocity lines and show the
ray paths are piecewise linear by Fermat’s principle. This signifi-
cantly reduces the computation for determining the travel path. An
iterative message-passing reconstruction algorithm is developed and
used to give probability map of different possible scenario. Parallel
processing technique can be used in each node to boost the computa-
tion. We show in simulation that if the ground truth belong to the set
of candidates, we can successfully reconstruct it. Future work will
be studying the multi-lines case and exploring how to generate the
set of candidates to achieve better approximation of true model.

(a) True model (b) Initial structure

(c) After 10 iterations (d) After 30 iterations

(e) After 100 iterations (f) MSE with iterations

Fig. 4. Simulation with one high velocity channel

(a) True model (b) Initial structure

(c) After 100 iterations (d) MSE with iterations

(e) One solution (f) Another possible solution

Fig. 5. Simulation with high velocity channel not align with the
transmitter-receiver


