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ABSTRACT physical acoustical tomography, discovering link failure in network

. . . . . omography P], etc. Our initial motivation for this work comes from
We consider travel time tomography problems involving detection o% graphy Pl

high contrast, discrete high velocity lines. This results in a discret
nonlinear inverse problem, for which traditional least-squares reconss

roblems in oil reservoir characterization. In this setting the perme-

lqorithm that id tabl truction for hi ne structure within the reservoir), is much faster than through sur-
a new aigorithm that provides a more stable reconstruction for hig ounding areas. Understanding these fractures is critical in reservoir
contrast velocity scenarios. Our approach is based on using mu“&haracterization"ﬂ

ple candidate discrete high velocity lines along with a probabilistic We propose a method to estimate high velocity line (HVL) struc-

mixture model that captures the likelihood of each of the lines. Wﬁures with discrete velocity. Based on Fermat's principle, we show

propose an iterative algorithm based on a graphical model that SUthat the actual travel path can be approximated by combining the
cesglvgly upqates the length and probability of these line _structuregﬁect of a few line segments, which significantly reduces the com-
Preliminary simulation results show that exact reconstruction can beutation complexity to calculéte the travel path. Traditional travel
g;?ée:tfscltrlrc:sses when the ground-truth fines are a subset of can ime tomography techniques estimate spatial velocity or slowness

) values for the area of interest by breaking it into cells and estimating

Index Terms— Travel time tomography, Discrete tomography, local velocity under smoothness constraints. Instead we consider

High contrast velocity model. discrete structures (lines) on a homogeneous velocity background.
We start by defining a list of possible HVLs, and associate a proba-
1. INTRODUCTION bility to each of them. Then, based on the travel time constraints,

we iteratively refine the candidate HVL parameters (their length)

Travel time tomography aims to reconstruct an interior slowness (re2Nd re-weight their probabilities. Similar to the expectation maxi-
ciprocal of velocity) model based on measured first-arrival time beMization (EM) algorithm, in every iteration we lower the bound for
tween transmitters and receivers with known locations. The velocit@!obal mismatch function. The reconstruction results are presented
model characterizes the physical properties of the region where pro@S & Probability map showing which of the candidate HVLs are more
agation occurs. However, different from X-ray computed tomograikely to represent the underlying structure of the system. Compared
phy, the assumption of a straight line wave propagation model is usto ma_ltrlx inversion methods, our algorithm avoids oscnlatlon_s in the
ally a poor approximation in acoustical or electromagnetic tomograselution model. To the best of our knowledge most travel time to-
phy, where the travel ray path bends according to the local propag&209raphy techniques focus on smooth low contrast cases and we
tion velocity. Without knowing the actual travel path ,reconstruction@'® the first to propose a discrete line-based solution for the high
of the slowness model becomes a nonlinear inverse problem. MarfjPntrast, discrete velocity case. .
iterative algorithms have been proposed based on iteratively solving The rest of the paper is organized as follows. In Section 2 we
the linearized problem, and requires the slowness model is smoo?ﬁrm‘mate the problem. Section 3 gives an overview of our proposed
[?]. However the reconstructed image resolution becomes worse f@PpProach for estimation. Simulation results and discussions are pre-
higher velocity contrast cases because linearized function is a po§ented in Section 4. Section 5 concludes this paper.
approximation p].

In our work, we focus on nonlinear travel time tomography with
high contrast, discrete velocity values. Specifically we consider the

case where velocity has twc_) d?screte values: very high velocity ir.]l'he travel time tomography problem can be modeled as a nonlin-
woerlftégflt%r: Sei?ednggjvsloﬁ:géggig oTh%ginﬁ)ngrbcicgﬁéeviﬁé -gi"%ar inverse problem. Letbe am—vector of the measured travel

y In >Ng u SXime , t = (t1,...,tm)T, wheret; is the travel time between
crete values and by permitting discrete structures other than lines

to be used. Example scenarios where this formulation can be ez-_th transmitter-receiver pair aneh is the total number of views
- Bxamp! X S . ransmitter-receiver pairs). In standard approaches for travel tim
countered arise in different fields, e.g., finding a fault zone in geo:

tomography, it is assumed that the model can be divided into cells
This work is supported in part by Chevron Corp. under thetjpinject ~ (in 2D) and the travel velocity inside one cellTls constant. Denote

Center for Interactive Smart Oilfield Technologies (CiSadt)the University s the slowness model moded, = (s1,...,s,)" for the n cells,

of Southern California. with s; representing the slowness of tji¢h cell. Thens andt are

2. PROBLEM FORMULATION




related by the travel pathh x n matrix M. The ray travel path 3. PROPOSED ALGORITHM
matrix M represents the cells through which the ray pasddsis
anm x n matrix whereM; ; represents the length of thith travel ~ Given the location of transmitter and receiver, our goal is to find
path through thgth cell: a solution of HVLs, L, to fit the measured travel time How-
ever, as in many inverse problems, the solutianay not be unique.
We propose an algorithm to find solutions with different probability
M-s=t (1) weights.

We start by defining the parameters. Assuming there &nans-
mitters, g receivers, we will haven = p - g views. We denote
T;(L1 U Ls) the travel time forith transmitter-receiver pair given
the presence of two high velocity linés, L. For each transmitter-

how to find the corresponding slowness maslahd ray-path matrix ~ '€Ceiver pair, we considek” possible HVL candidates with length
M with measured travel time. There are various of reconstruction ' (}) and probabilityP(l;(A)),i = 1,...,m, A = 1,..., K. with

algorithms for continuous slowness mogelWe refer to f] for a 1 P(1:(\)) = 1 (see Figure?? for an example). We initialize

good introduction to these techniques. the candidates in each pair so that each candidate has initial length
In this f . h | liéoc) that satisfies the measured travel tithg.e.,l;(«) are chosen
paper, we focus on scenarios where slownesss cannot %o thatT, (1:(a)) = ti.a = 1 K, with all candidates having

assumed to be smooth. Instead our goal is detect discrete high vVe- " Ll tis b N e Siven that there aren views
locity lines (HVLs) in a homogeneous background. The iterative. qual p yP(li(e) = 1/K. !

linearized approximation method works poorly in this cae As if we chose a candidate in each pair there wouldiy& possible

X ; . combinations of candidates to represent the global behavior, making
an alternative we propose a new approach where the goal is to ide[j-

tify HVLs among a set of candidates. Unlike previously propose e search for the correct combination impractical.

. . Thus, instead of searching among combinations of multiple
methods, continuous slowness values are assigned to 2D cells (unqﬂ/Ls our algorithm focuses on the interaction between two pairs

smoothness constraints), here we operate on discrete lines, Whochandidates We propose a graphical mo@l §hown in Fig. 3
length and probabilities are updated iteratively. We set travel time tQ ; prop grap 9-

o . _and develop a message-passing algorithm that alternates between
2:(')?;9&':;1';5 andtd per unit distance along surrounding homoge estimating the length (\) and reweighing the probabilitf (1; (\)),

for all the pairsi = 1,...,m and candidated = 1,..., K. There
According to Fermat's principle, the ray travel path correspond-re two types of nodes in the graphical model: the candidate vari-

ing to observed travel time between a transmitter and a receiver igyle nodes/; (), which capture the length () and probability

the fastest one among all possible paths. Consider the example gf(;, («)), the check noded,, which are used to compare estimated

Fig. ??, where only one HVL is considered. In this case the ob-trave| timeT}, with the measured travel tintg for kth travel path.

served travel time should be of function of distance from transmitter |, first part of the iteration, check nodes send messages to vari-

to HVL and from HVL to receiver (assume infinite velocity within aple nodes to inform them of the best estimated lengths based on the

the HVL). As seen in Fig. ??, the fastest travel path *bends” to ¢yrrent information from candidate variable nodes. In the second

follow the HVL. Thus, if we considering an HVL of known orienta- part of the iteration, candidate variable nodes process the incoming

tion, near a transmitter and a receiver (aS in F@), itis pOSSible messages and update their |eng’[hs and probabi”tiesl

to find (using simple geometry) the optimal line length to matchthe |y order to quantify the interaction between the candidates in

measured travel time between the transmitter/receiver pair. Note thglfferent pairs, we define a mismatch functiotl; (o), I;|tx), that

this geometric approach can be extended to cases where more thaBasures the expected value of the mismatch between estiffiated,

one HVL is considered. and measured,, travel times when considering the current length
As a starting point we define several HVL candidates betweerstimate;(«) for a given candidate and considering the effect of all

each transmitter and each receiver, as illustrated in Fig. 2. In thisxisting candidates for another transmitter-receiver paig():

work, we assume the orientation and velocity associated to these

lines remains fixed, but their length and probability is updated by K

the algorithm. Our goal is to estimate the length and probability for o(li(a), Ljlte) = Z T3 (li(@) U1 (B)) = tell + P(L;(8)  (2)

all lines, so thatll travel times between pairs can be matched as p=1

well as possible.

Note that each solutios leads to a different matri?vI and (??)
simply states the total travel time along theth path is the sum of
times spent in each cell along the pa#h [The inverse problem is

A key observation in our method is that the travel time function
is monotonic, i.e., increasing the number or length of HVLs means
the travel timeT}, will strictly decrease:

High velocity Receiver

channel [ )
Candidates Tk (ll(a) U---u lm(C)) S Tk (lZ (a) U lj (6))
< ik 3)
Therefore
Transmitter Receiver 22] 13 HTk (lz(Oé) -y lm(c)) — tk”
Transmitter Z HTk (lz (Oé) U lj (6) B tkH (4)

Thus,the pairwise mismatch is a bound for the global mismatch. At
Fig. 1. Wave travel path with Fig. 2. Candidates of high veloc- initialization time we have thaf}, < ¢; for all k, and at every itera-
high velocity channel. ity channels. tion we will decrease the length of the lines (increase travel time), in
order to approach measured times. As in the EM algorithm, although
we only consider partial structure (two transmitter-receiver pairs), in



Messages will flow from all check nod€s.,k = 1,...,m to
the candidate variable nodg«). Next step will be to decide which
one of the incoming messagés(7, — li(a)),k = 1,...,m}is
a better update fok; (o). Thel;(a) needs to satisfy the constraint
of (??) forall k = 1,..., m. Because shorter length corresponds
to longer travel time, if we choode(«) > ¢(Ti — l:(«)), this can
guarantee the travel time is smaller thian Therefore, we choose
li(a) = max q(Tx, — 1;(«)) as our new update.

After we update the length of the candidate variable node, we
want to reweigh the probability of each candidate. We need to know
which measured data determines the update. Let

Tl TQ

9)

r = arg rn]?xq(Tk — ;i (@)
Fig. 3. Graphical model of the 2 candidate and 2 measured time
case. r is the pair index that represents which travel time dateestricts
the length ofl;(«)). This pair should give the most information
aboutl; (a). We reweigh the probability of each candid&t€;(«a)),
every iteration we will lower the matching error for the pairs, andwhich is inversely proportional to the mismatch function.

therefore that for the global solution.

Now we introduce the message passing through the graphical
model. ¢(Tr — l;(«)) denotes the message from measured data
nodeT}, to candidate variable nodg(«). It gives the estimate of
lengthl; (o) based on the measured dateand pairwise interaction
with candidates in other pairs. In order to figtll, — 1;(v)), first
we calculatd; (alj, tx), the length forl; («) which leads to the low-
est average travel time error to matighwhen combining its effect
with that of all the line candidates for vieyy ;(3), for Vbeta.

For each of the other pairg,= 1,...,m,j # i, we solve the
minimization problem

K
li(alj, tr) = arg min » [Tk (li(a) UL;(B)) — ti]l - P(1;(8))
e B=1
(5)
with the constraint
Ti(li(e) UL;(B)) < tr (6)

Repeating this step, we will ha¥é; (a7, tx),7 = 1,...,m,j #
i} that gives the estimated length when considering pairwise in-1:
teraction with all other candidatds(8),j = 1,...,m,j # i. :
We have to choose the messag, — li(a)) to send from
{li(aj,tk),j = 1,...,m,j # i}. In order to choose the mes-
sage considel; (a7, tx) andl;(a|g, tx), and assumeé (alj, tx) <
l:(a|q, t). Due to the monotonicity property mentioned earlier if 3
we compare two alternative global solutions that differ only in the
term;, we will have that (shorter HVLs mean longer propagation
times):

Ti(li(elg, te) U Ulm(Q)) < Tu(li(alj,te) U Ulm(C))
< Tu(li(alj, te) UL (8))
<tk (7)
so that
1Tk (li(edg, tr) U Ulm(C)) — till 5
. 6
> (| Th(ls(alj, te) U+ Ulim(€)) — ® o
i.e., li(alj,tx) leads to lower mismatch thaR(«|q,tx). There- 8:
fore, l; (a7, tx) will be a better estimate for the length(«) and 9:
we choose the message based on travel tinees:
10:

Tk = li(a)) = mjinli(alj, tr). 11:

of the solution. For alk = 1,..
probability

: Check the validity: Foralk =1, ...
if Tk (lz (Oé)) < tr then

1
o(li(a), lrltr) + 6
Thed term is added to help the stability.

After reweighing probability, we also need to check the validity
.,m, if Ti(l;(a)) < tg, set the

P(li(a)) o (10)

P(l;(a)) =0.

The reason we set the probability to zero iFif(l; («)) < t

is adding another line always decrease the travel time. The global
structurely (I; (o) U - - - Ul (¢)) will go further from the measured
timety.

Finally, we normalize the probability

> P(li(a)) =1

The algorithm is stated below:
Set the iteration numbédr= 0.

2: For every node of travel timé,, calculate the messagél;, —

l;(«)) send to nodd;(«). For each of the other pairg,
1,...,m,j # 1, solve the minimization problen?®) to get
li(alj, t).

Set the message send from nddeto I; (a) as

a(T, — li(a)) = minki(alj, te) (11)

. In the candidate variable node, with all the messages send from

every nodéely,, k = 1,...,m, choose the length update by

li(a) = max q(Tx — li(a)) (12)
And letr = arg maxx ¢(Tx — i (@)).
s

Set the probabilityP (1;(«))
else

Reweigh the probability of each candida®él;(«)) by (?7),

which is inversely proportional to the mismatch function.
Normalize the probability-*_, P(l;(a)) = 1.
Go to step 2 until reach the maximum number of iteratibps. .

=0.



Our algorithm is a heuristic search on graphical model. In step
2, we try to find the messadg.)(k — i(a)) , sending from node
T} t0 ;o). This gives the 'belief’ of how; () should be depending
on the datay. If we look at all of possible combinations, it will be
Ti(li(a) U+ - - Ul (C)). Since it will not be practical to consider all
the K™™' combinations, instead, we consider only the pairwise in-
teractionT (1;(c) U 1;(B)),j = 1,...,m and update partial struc-
ture. Similar to the EM algorithm, every iteration we choose new
estimated length and probability of candidates to decrease the local
mismatch function. ¢From?®), we can easily see the local mis-
match is a lower bound for global mismatch. Therefore, we expect
the global mismatch function will decrease through iterations.

4. SIMULATION RESULTS

In our simulation, we set theD testing region with64 x 32 blocks

of homogeneous background. The travel time data has 25 ray paths,
including5 x 5 from bottom to top. The transmitters and receivers
are uniformly located in the lower and upper boundary. Each travel
path has3 possible high velocity line candidates.

In the first experiment, the candidates contain the ground truth,
but not for second experiment.

The result should be read as a probability map. The lighter col-
ored regions correspond to a higher probability that a high velocity
region is present. For the first experiment, the result converges to ex-
actly the true model. Our algorithm successfully picks the right can-

didate in iterations. As we expect, the mean square error decreases

in each iteration even though we only consider pairwise interactions.
In the second experiment, the true model does not belong to the set
of candidates. Therefore, our algorithm will try to approximate the
solution by the given set of candidates. The result should be viewed
as the combination of different possible solutions. We list two pos-
sible solutions from estimated results. Because we only consider
the interaction between two high velocity lines, the reconstruction
performance is affected by several factors, such as numbendf-ca
dates, complexity of underlying structure, number of transmitter and
receivers, and that we can do well in some of these cases.

Adding more number of candidates will give a larger set of ba-
sis to approximate the ground truth. The price we pay is the com-
putational complexity. Our algorithm has a cost@fm?® K?), sig-
nificantly lower than that of the combinatorial approac¢h,K™).
While ours is a heuristic approach it does provide encouraging re-
sults in simple tests. We will consider more complex situations in
future work.

5. CONCLUSION

The main purpose of this paper is to develop a new algorithm to
reconstruct high contrast discrete velocity model in travel time to-
mography. We take advantage of high velocity lines and show the
ray paths are piecewise linear by Fermat’s principle. This signifi-
cantly reduces the computation for determining the travel path. An
iterative message-passing reconstruction algorithm is developed and
used to give probability map of different possible scenario. Parallel

processing technique can be used in each node to boost the computgg. 5. Simulation with high velocity channel not align with the
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tion. We show in simulation that if the ground truth belong to the setyansmitter-receiver

of candidates, we can successfully reconstruct it. Future work will
be studying the multi-lines case and exploring how to generate the
set of candidates to achieve better approximation of true model.



