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This paper proposes a practical video coding framework based on distributed source coding principles, with the goal to achieve
efficient and low-complexity scalable coding. Starting from a standard predictive coder as base layer (such as MPEG-4 baseline
video coder in our implementation), the proposed Wyner-Ziv scalable (WZS) coder can achieve higher coding efficiency, by selec-
tively exploiting the high quality reconstruction of the previous frame in the enhancement layer coding of the current frame. This
creates a multi-layer Wyner-Ziv prediction “link,” connecting the same bitplane level between successive frames, thus providing
improved temporal prediction as compared to MPEG-4 FGS, while keeping complexity reasonable at the encoder. Since the tem-
poral correlation varies in time and space, a block-based adaptive mode selection algorithm is designed for each bitplane, so that
it is possible to switch between different coding modes. Experimental results show improvements in coding efficiency of 3–4.5 dB
over MPEG-4 FGS for video sequences with high temporal correlation.
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1. INTRODUCTION

Scalable coding is well suited for video streaming and broad-
cast applications as it facilitates adapting to variations in net-
work behavior, channel error characteristics, and computa-
tion power availability at the receiving terminal. Predictive
coding, in which motion-compensated predictors are gen-
erated based on previously reconstructed frames, is an im-
portant technique to remove temporal redundancy among
successive frames. It is well known that predictive techniques
increase the difficulty of achieving efficient scalable coding
because scalability leads to multiple possible reconstructions
of each frame [1]. In this situation, either (i) the same pre-
dictor is used for all layers, which leads to either drift or cod-
ing inefficiency, or (ii) a different predictor is obtained for
each reconstructed version and used for the corresponding
layer of the current frame, which leads to added complexity.
MPEG-2 SNR scalability with a single motion-compensated
prediction loop and MPEG-4 FGS exemplify the first ap-
proach. MPEG-2 SNR scalability uses the enhancement-layer
(EL) information in the prediction loop for both base and
enhancement layers, which leads to drift if the EL is not re-
ceived. MPEG-4 FGS provides flexibility in bandwidth adap-
tation and error recovery because the enhancement layers
are coded in “intra-” mode, which results in low coding ef-
ficiency especially for sequences that exhibit high temporal
correlation.

Rose and Regunathan [1] proposed a multiple motion-
compensated prediction loop approach for general SNR scal-
ability, in which each EL predictor is optimally estimated
by considering all the available information from both base
and enhancement layers. Several alternative multilayer tech-
niques have also been proposed to exploit the temporal cor-
relation in the EL inside the FGS framework [2–4]. They
employ one or more additional motion-compensated pre-
diction loops to code the EL, for which a certain number
of FGS bitplanes are included in the EL prediction loop to
improve the coding efficiency. Traditional closed-loop pre-
diction (CLP) techniques have the disadvantage of requiring
the encoder to generate all possible decoded versions for each
frame, so that each of them can be used to generate a predic-
tion residue. Thus, the complexity is high at the encoder, es-
pecially for multilayer coding scenarios. In addition, in order
to avoid drift, the exact same predictor has to be used at both
the encoder and decoder.

Distributed source coding techniques based on network
information theory provide a different and interesting view-
point to tackle these problems. Several video codecs us-
ing side information (SI) at the decoder [5–10] have been
recently proposed within the Wyner-Ziv framework [11].
These can be thought of as an intermediate step between
“closing the prediction loop” and coding each frame inde-
pendently. In closed-loop prediction, in order for the en-
coder to generate a residue it needs to generate the same
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predictor that will be available at the decoder. Instead, a
Wyner-Ziv encoder only requires the correlation structure be-
tween the current signal and the predictor. Thus there is no
need to generate the decoded signal at the encoder as long as
the correlation structure is known or can be found.

Some recent work [12–15] has addressed the problem
of scalable coding in the distributed source coding setting.
Steinberg and Merhav [12] formulated the theoretical prob-
lem of successive refinement of information in the Wyner-
Ziv setting, which serves as the theoretical background of
our work. In our work, we target the application of these
principles to actual video coding systems. The two most re-
lated recent algorithms are in the works by Xu and Xiong
[13] and Sehgal et al. [14]. There are a number of impor-
tant differences between our approach and those techniques.
In [13], the authors presented a scheme similar to MPEG-
4 FGS by building the bitplane ELs using Wyner-Ziv cod-
ing (WZC) with the current base and more significant ELs
as SI, ignoring the EL information of the previous frames.
In contrast, our approach explores the remaining temporal
correlation between the successive frames in the EL using
WZC to achieve improved performance over MPEG-4 FGS.
In [14], multiple redundant Wyner-Ziv encodings are gen-
erated for each frame at different fidelities. An appropriate
encoded version is selected for streaming, based on the en-
coder’s knowledge of the predictor available at the decoder.
This scheme requires a feedback channel and additional de-
lay and thus it is not well suited for broadcast or low-delay
applications. In short, one method [13] ignores temporal re-
dundancy in the design, while the other [14] creates separate
and redundant enhancement layers rather than a single em-
bedded enhancement layer. In addition to these approaches
for SNR scalability, Tagliasacchi et al. [15] have proposed a
spatial and temporal scalable codec using distributed source
coding. They use the standards-conformant H.264/AVC to
encode the base layer, and a syndrome-based approach sim-
ilar to [6] to encode the spatial and temporal enhancement
layers. Motion vectors from the base layer are used as coarse
motion information so that the enhancement layers can ob-
tain a better estimate of the temporal correlation. In contrast,
our work focuses on SNR scalability.

We propose, extending our previous work [16, 17], an
efficient solution to the problem of scalable predictive cod-
ing by recasting it as a Wyner-Ziv problem. Our proposed
technique achieves scalability without feedback and exploits
both spatial and temporal redundancy in the video signal.
In [16], we introduced the basic concept on a first-order
DPCM source model, and then presented a preliminary
version of our approach in video applications in [17]. Our
approach, Wyner-Ziv scalable coding (WZS), aims at apply-
ing in the context of Wyner-Ziv the CLP-based estimation-
theoretic (ET) technique in [1]. Thus, in order to reduce the
complexity, we do not explicitly construct multiple motion-
compensation loops at the encoder, while, at the decoder,
SI is constructed to combine spatial and temporal infor-
mation in a manner that seeks to approximate the princi-
ples proposed in [1]. In particular, starting from a standard
CLP base-layer (BL) video coder (such as MPEG-4 in our

implementation), we create a multilayer Wyner-Ziv predic-
tion “link,” connecting the same bitplane level between suc-
cessive frames. The decoder generates the enhancement-layer
SI with either the estimation theoretic approach proposed in
[1] or our proposed simplified switching algorithm to take
into account all the available information to the EL. In order
to design channel codes with appropriate rates, the encoder
estimates the correlation between the current frame and its
enhancement-layer SI available at the decoder. By exploiting
the EL information from the previous frames, our approach
can achieve significant gains in EL compression, as compared
to MPEG-4 FGS, while keeping complexity reasonably low at
the encoder.

A significant contribution of our work is to develop a
framework for integrating WZC into a standard video codec
to achieve efficient and low-complexity scalable coding. Our
proposed framework is backward compatible with a standard
base-layer video codec. Another main contribution of this
work is to propose two simple and efficient algorithms to
explicitly estimate at the encoder the parameters of a model
to describe the correlation between the current frame and
an optimized SI available only at the decoder. Our estimates
closely match the actual correlation between the source and
the decoder SI. The first algorithm is based on constructing
an estimate of the reconstructed frame and directly measur-
ing the required correlations from it. The second algorithm
is based on an analytical model of the correlation structure,
whose parameters the encoder can estimate.

The paper is organized as follows. In Section 2, we briefly
review the theoretical background of successive refinement
for the Wyner-Ziv problem. We then describe our proposed
practical WZS framework and the correlation estimation al-
gorithms in Sections 3 and 4, respectively. Section 5 describes
the codec structure and implementation details. Simulation
results are presented in Section 6, showing substantial im-
provement in video quality for sequences with high tempo-
ral correlation. Finally, conclusions and future work are pro-
vided in Section 7.

2. SUCCESSIVE REFINEMENT FOR
THE WYNER-ZIV PROBLEM

Steinberg and Merhav [12] formulated the theoretical prob-
lem of successive refinement of information, originally pro-
posed by Equitz and Cover [18], in a Wyner-Ziv setting (see
Figure 1). A source X is to be encoded in two stages: at the
coarse stage, using rate R1, the decoder produces an approx-
imation ̂X1 with distortion D1 based on SI Y1. At the refine-
ment stage, the encoder sends an additional ΔR refinement
bits so that the decoder can produce a more accurate recon-
struction ̂X2 with a lower distortion D2 based on SI Y2. Y2 is
assumed to provide a better approximation to X than Y1 and
to form a Markov chain X → Y2 → Y1. Let R∗X|Y (D) be the
Wyner-Ziv rate-distortion function for coding X with SI Y .
A source X is successively refinable if [12]

R1 = R∗X|Y1

(

D1
)

, R1 + ΔR = R∗X|Y2

(

D2
)

. (1)
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Figure 1: Two-stage successive refinement with different side infor-
mation Y1 and Y2 at the decoders, where Y2 has better quality than
Y1, that is, X → Y2 → Y1.

Successive refinement is possible under a certain set of condi-
tions. One of the conditions, as proved in [12], requires that
the two SIs, Y1 and Y2, be equivalent at the distortion level D1

in the coarse stage. To illustrate the concept of “equivalence,”
we first consider the classical Wyner-Ziv problem (i.e., with-
out successive refinement) as follows. Let Y be the SI avail-
able at the decoder only, for which a joint distribution with
source X is known by the encoder. Wyner and Ziv [11] have
shown that

R∗X|Y = min
U

[

I(X ;U|Y)
]

, (2)

where U is an auxiliary random variable, and the minimiza-
tion of mutual information between X and U given Y is over
all possible U such that U → X → Y forms a Markov chain
and E[d(X , f (U ,Y))] ≤ D. For the successive refinement
problem, Y2 is said to be equivalent to Y1 at D1 if there ex-
ists a random variable U achieving (2) at D1 and satisfying
I(U ;Y2|Y1) = 0 as well. In words, when Y1 is given, Y2 does
not provide any more information about U .

It is important to note that this equivalence is unlikely
to arise in scalable video coding. As an example, assume that
Y1 and Y2 correspond to the BL and EL reconstruction of
the previous frame, respectively. Then, the residual energy
when the current frame is predicted based on Y2 will in gen-
eral be lower than if Y1 is used. Thus, in general, this equiv-
alence condition will not be met in the problem we consider
and we should expect to observe a performance penalty with
respect to a nonscalable system. Note that one special case
where equivalence holds is that where identical SIs are used
at all layers, that is, Y1 = Y2. For this case and for a Gaus-
sian source with quadratic distortion measure, the successive
refinement property holds [12]. Some practical coding tech-
niques have been developed based on this equal SI property;
for example, in the work of Xu and Xiong [13], where the
BL of the current frame is regarded as the only SI at the de-
coder at both the coarse and refinement stages. However, as
will be shown, constraining the decoder to use the same SI at
all layers leads to suboptimal performance. In our work, the
decoder will use the EL reconstruction of the previous frame
as SI, outperforming an approach similar to that proposed in
[13].

BL1 BL2 BLk· · ·

EL11 EL21 ELk1· · ·

EL1L EL2L ELkL· · ·
...

...
...

Frame 1 Frame 2 Frame k

BL CLP temporal prediction
EL SNR prediction
EL temporal prediction

Figure 2: Proposed multilayer prediction problem. BLi: the base
layer of the ith frame. ELi j : the jth EL of the ith frame, where the
most significant EL bitplane is denoted by j = 1.

3. PROPOSED PREDICTION FRAMEWORK

In this section, we propose a practical framework to achieve
the Wyner-Ziv scalability for video coding. Let video be en-
coded so that each frame i is represented by a base layer
BLi, and multiple enhancement layers ELi1, ELi2, . . . , ELiL, as
shown in Figure 2. We assume that in order to decode ELi j

and achieve the quality provided by the jth EL, the decoder
will need to have access to (1) the previous frame decoded up
to the jth EL, ELi−1,k, k ≤ j, and (2) all information for the
higher significance layers of the current frame, ELik, k < j, in-
cluding reconstruction, prediction mode, BL motion vector
for each inter-mode macroblock, and the compressed resid-
ual. For simplicity, the BL motion vectors are reused by all EL
bitplanes.

With the structure shown in Figure 2, a scalable coder
based on WZC techniques would need to combine multi-
ple SIs at the decoder. More specifically, when decoding the
information corresponding to ELi,k, the decoder can use as
SI decoded data corresponding to ELi−1,k and ELi,k−1. In or-
der to understand how several different SIs can be used to-
gether, we first review a well-known technique for combin-
ing multiple predictors in the context of closed-loop coding
(Section 3.1 below). We then introduce an approach to for-
mulate our problem as a one of source coding with side in-
formation at the decoder (Section 3.2).

3.1. Brief review of ET approach [1]

The temporal evolution of DCT coefficients can be usually
modelled by a first-order Markov process:

xk = ρxk−1 + zk, xk−1⊥zk, (3)

where xk is a DCT coefficient in the current frame and xk−1
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Figure 3: Basic difference at the encoder between the CLP techniques such as ET and our proposed problem: (a) CLP techniques, (b) our
problem setting.

is the corresponding DCT coefficient in the previous frame
after motion compensation. Let x̂bk and x̂ek be the base and
enhancement-layer reconstruction of xk, respectively. After
the BL has been generated, we know that xk ∈ (a, b), where
(a, b) is the quantization interval generated by the BL. In ad-
dition, assume that the EL encoder and decoder have access
to the EL reconstructed DCT coefficient x̂ek−1 of the previous
frame. Then the optimal EL predictor is given by

x̃ek = E
[

xk | x̂ek−1, xk ∈ (a, b)
]

≈ ρx̂ek−1 + E
[

zk | zk ∈
(

a− ρx̂ek−1, b− ρx̂ek−1

)]

.
(4)

The EL encoder then quantizes the residual

rek = xk − x̃ek. (5)

Let (c,d) be the quantization interval associated with rek , that
is, rek ∈ (c,d), and let e = max(a, c + x̃ek) and f = min(b,d +
x̃ek). The optimal EL reconstruction is given by

x̂ek = E
[

xk | x̂ek−1, xk ∈ (e, f )
]

. (6)

The EL predictor in (4) can be simplified in the following two
cases: (1) x̃ek ≈ x̂bk if the correlation is low, ρ ≈ 0, or the total
rate is approximately the same as the BL rate, that is, x̂ek−1 ≈
x̂bk−1; and (2) x̃ek ≈ x̂ek−1 for cases where temporal correlation
is higher or such that the quality of the BL is much lower than
that of the EL.

Note that in addition to optimal prediction and recon-
struction, the ET method can lead to further performance
gains if efficient context-based entropy coding strategies are
used. For example, the two cases x̃ek ≈ x̂bk and x̃ek ≈ x̂ek−1 could
have different statistical properties. In general, with the pre-
dictor of (4), since the statistics of zk tend to be different de-
pending on the interval (a − ρx̂ek−1, b − ρx̂ek−1), the encoder
could use different entropy coding on different intervals [1].
Thus, a major goal in this paper is to design a system that
can achieve some of the potential coding gains of conditional
coding in the context of a WZC technique. To do so, we will

design a switching rule at the encoder that will lead to differ-
ent coding for different types of source blocks.

3.2. Formulation as a distributed source
coding problem

The main disadvantage of the ET approach for multilayer
coding resides in its complexity, since multiple motion-
compensated prediction loops are necessary for EL predictive
coding. For example, in order to encode EL21 in Figure 2, the
exact reproduction of EL11 must be available at the encoder.
If the encoder complexity is limited, it may not be practical to
generate all possible reconstructions of the reference frame at
the encoder. In particular, in our work we assume that the en-
coder can generate only the reconstructed BL, and does not
generate any EL reconstruction, that is, none of the ELi j in
Figure 2 are available at the encoder. Under this constraint,
we seek efficient ways to exploit the temporal correlation be-
tween ELs of consecutive frames. In this paper, we propose to
cast the EL prediction as a Wyner-Ziv problem, using Wyner-
Ziv coding to replace the closed loop between the respective
ELs of neighboring frames.

We first focus on the case of two-layer coders, which can
be easily extended to multilayer coding scenarios. The basic
difference at the encoder between CLP techniques, such as
ET, and our problem formulation is illustrated in Figure 3. A
CLP technique would compute an EL predictor:

x̃ek = f
(

x̂ek−1, x̂bk
)

, (7)

where f (·) is a general prediction function (in the ET case,
f (·) would be defined as in (4)). Then, the EL encoder would
quantize the residual rek in (5) and send it to the decoder.

Instead, in our formulation, we assume that the encoder
can only access x̂bk , while the decoder has access to both x̂bk
and x̂ek−1. Therefore, the encoder cannot generate the same
predictor x̃ek as (7) and cannot explicitly generate rek . Note,
however, that x̂bk , one of the components in (7), is in fact
available at the encoder, and would exhibit some correlation
with xk. This suggests making use of x̂bk at the encoder. First,
we can rewrite rek as

rek = xk − x̃ek =
(

xk − x̂bk
)− (x̃ek − x̂bk

)

, (8)
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Figure 4: Discrete memoryless channel model for coding uk : (a) binary channel for bitplanes corresponding to absolute values of frequency
coefficients (i.e., uk,l at bitplane l), (b) discrete memoryless channel with binary inputs (“−1” if ulk < 0 and “1” if ulk > 0) and three outputs
(“−1” if vlk < 0, “1” if vlk > 0, and “0” if vlk = 0) for sign bits.

and then to make explicit how this can be cast as a Wyner-
Ziv coding problem, let uk = xk − x̂bk and vk = x̃ek − x̂bk . With
this notation uk plays the role of the input signal and vk plays
the role of SI available at the decoder only. We can view vk
as the output of a hypothetical communication channel with
input uk corrupted by correlation noise. Therefore, once the
correlation between uk and vk has been estimated, the en-
coder can select an appropriate channel code and send the
relevant coset information such that the decoder can obtain
the correct uk with SI vk. Section 4 will present techniques
to efficiently estimate the correlation parameters at the en-
coder.

In order to provide a representation with multiple layers
coding, we generate the residue uk for a frame and rep-
resent this information as a series of bitplanes. Each bit-
plane contains the bits at a given significance level ob-
tained from the absolute values of all DCT coefficients in
the residue frame (the difference between the base-layer re-
construction and the original frame). The sign bit of each
DCT coefficient is coded once in the bitplane where that
coefficient becomes significant (similar to what is done
in standard bitplane-based wavelet image coders). Note
that this would be the same information transmitted by
an MPEG-4 FGS technique. However, differently from the
intra-bitplane coding in MPEG-4 FGS, we create a mul-
tilayer Wyner-Ziv prediction link, connecting a given bit-
plane level in successive frames. In this way, we can exploit
the temporal correlation between corresponding bitplanes
of uk and vk, without reconstructing vk explicitly at the en-
coder.

4. PROPOSED CORRELATION ESTIMATION

Wyner-Ziv techniques are often advocated because of their
reduced encoding complexity. It is important to note, how-
ever, that their compression performance depends greatly on
the accuracy of the correlation parameters estimated at the

encoder. This correlation estimation can come at the expense
of increased encoder complexity, thus potentially eliminat-
ing the complexity advantages of WZC techniques. In this
section, we propose estimation techniques to achieve a good
tradeoff between complexity and coding performance.

4.1. Problem formulation

Our goal is to estimate the correlation statistics (e.g., the ma-
trix of transition probabilities in a discrete memoryless chan-
nel) between bitplanes of same significance in uk and vk. To
do so, we face two main difficulties. First, and most obvious,
x̂ek−1, and therefore vk, are not generated at the encoder as
shown in Figure 3. Second, vk is generated at the decoder by
using the predictor x̃ek from (7), which combines x̂ek−1 and x̂bk .
In Section 4.2, we will discuss the effect of these combined
predictors on the estimation problem, with a focus on our
proposed mode-switching algorithm.

In what follows, the most significant bitplane is given the
index “1,” the next most significant bitplane index “2,” and so
on. uk,l denotes the lth bitplane of absolute values of uk, while
ulk indicates the reconstruction of uk (including the sign in-
formation) truncated to its l most significant bitplanes. The
same notation will be used for other signals represented in
terms of their bitplanes, such as vk.

In this work, we assume the channel between the source
uk and the decoder SI vk to be modeled as shown in Figure 4.
With a binary source uk,l, the corresponding bitplane of vk,
vk,l, is assumed to be generated by passing this binary source
through a binary channel. In addition to the positive (symbol
“1”) and negative (symbol “−1”) sign outputs, an additional
output symbol “0” is introduced in the sign bit channel to
represent the case when SI vk = 0.

We propose two different methods to estimate crossover
probabilities, namely, (1) a direct estimation (Section 4.3),
which generates estimates of the bitplanes first, then directly
measures the crossover probabilities for these estimated
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bitplanes, and (2) a model-based estimation (Section 4.4),
where a suitable model for the residue signal (uk − vk) is ob-
tained and used to estimate the crossover probabilities in the
bitplanes. These two methods will be evaluated in terms of
their computational requirements, as well as their estimation
accuracy.

4.2. Mode-switching prediction algorithm

As discussed in Section 3, the decoder has access to two SIs,
x̂ek−1 and x̂bk . Consider first the prediction function in (7)
when both SIs are known. In the ET case, f (·) is defined as
an optimal prediction as in (4) based on a given statistical
model of zk. Alternatively, the optimal predictor x̃ek can be
simplified to either x̂ek−1 or x̂bk for a two-layer coder, depend-
ing on whether the temporal correlation is strong (choose
x̂ek−1) or not (choose x̂bk).

Here we choose the switching approach due to its lower
complexity, as compared to the optimal prediction, and also
because it is amenable to an efficient use of “conditional” en-
tropy coding. Thus, a different channel code could be used
to code uk when x̃ek ≈ x̂bk and when x̃ek ≈ x̂ek−1. In fact, if
x̃ek = x̂bk , then vk = 0, and we can code uk directly via entropy
coding, rather than using channel coding. If x̃ek = x̂ek−1, we
apply WZC to uk with the estimated correlation between uk
and vk.

For a multilayer coder, the temporal correlation usually
varies from bitplane to bitplane, and thus the correlation
should be estimated at each bitplane level. Therefore, the
switching rules we just described should be applied before
each bitplane is transmitted. We allow a different prediction
mode to be selected on a macroblock (MB) by macroblock
basis (allowing adaptation of the prediction mode for smaller
units, such as blocks or DCT coefficients, may be imprac-
tical). At bitplane l, the source uk has two SIs available at
the decoder: ul−1

k (the reconstruction from its more signif-
icant bitplanes) and x̂ek−1 (the EL reconstruction from the
previous frame). The correlation between uk and each SI is
estimated as the absolute sum of their difference. When both
SIs are known, the following parameters are defined for each
MB,

Eintra =
∑

MBi

∣

∣uk − ul−1
k

∣

∣,

Einter =
∑

MBi

∣

∣uk −
(

x̂ek−1 − x̂bk
)∣

∣ =
∑

MBi

∣

∣xk − x̂ek−1

∣

∣,
(9)

where only the luminance component is used in the com-
putation. Thus, we can make the mode decision as follows:
WZS-MB (coding of MB via WZS) mode is chosen if

Einter < Eintra. (10)

Otherwise, we code uk directly via bitplane by bitplane re-
finement (FGS-MB) since it is more efficient to exploit spa-
tial correlation through bitplane coding.

In general, mode-switching decisions can be made at ei-
ther encoder or decoder. Making a mode decision at the de-
coder means deciding which SI should be used to decode
WZC data sent by the encoder. The advantage of this ap-
proach is that all relevant SI is available. A disadvantage in
this case is that the encoder has to estimate the correlation
between uk and vk without exact knowledge of the mode de-
cisions that will be made at the decoder. Thus, because it does
not know which MBs will be decoded using each type of SI,
the encoder has to encode all information under the assump-
tion of a single “aggregate” correlation model for all blocks.
This prevents the full use of conditional coding techniques
discussed earlier.

Alternatively, making mode decisions at the encoder pro-
vides more flexibility as different coding techniques can be
applied to each block. The main drawback of this approach
is that the SI x̂ek−1 is not available at the encoder, which makes
the mode decision difficult and possibly suboptimal. In this
paper, we select to make mode decisions at the encoder, with
mode switching decisions based on the estimated levels of
temporal correlation. Thus Einter cannot be computed exactly
at the encoder as defined in (9), since x̂ek−1 is unknown; this
will be further discussed once specific methods to approxi-
mate Einter at the encoder have been introduced.

4.3. Direct estimation

For the lth bitplane, 1 ≤ l ≤ L, where L is the least significant
bitplane level to be encoded, we need to estimate the correla-
tion between uk,l and vk given all uk, j (1 ≤ j < l) which have
been sent to the decoder. While, in general, for decoding uk
all the information received by the decoder can be used, here,
we estimate the correlation under the assumption that to de-
code bitplane l, we use only the l most significant bitplanes
of the previous frame. The SI for bitplane l in this particular
case is denoted by v̌k(l), which is unknown at the encoder.

We compute vk(l) at the encoder to approximate v̌k(l),
1 ≤ l ≤ L. Ideally we would like the following requirements
to be satisfied: (1) the statistical correlation between each bit-
plane uk,l and v̌k(l), given all uk, j (1 ≤ j < l), can be well
approximated by the corresponding correlation between uk,l

and vk(l); and (2) vk(l) can be obtained at the encoder in a
simple way without much increased computational complex-
ity. This can be achieved by processing the original reference
frame xk−1 at the encoder. We first calculate the residual

sk = xk−1 − x̂bk (11)

at the encoder, and then generate bitplanes slk in the same
way as the ulk are generated. Let vk(l) = slk for 1 ≤ l ≤ L.
While vk(l) and v̌k(l) are not equal, the correlation between
vk(l) and uk,l provides a good approximation to the correla-
tion between v̌k(l) and uk,l, as seen in Figure 5, which shows
the probability that ulk �= slk (i.e., the values of uk and sk do
not fall into the same quantization bin), as well as the cor-
responding crossover probability between uk and decoder SI
v̌k(l). The crossover probability here is an indication of the
correlation level.



Huisheng Wang et al. 7

1 2 3 4 5

Bitplane level

0
0.01
0.02
0.03
0.04
0.05

0.06
0.07
0.08

C
ro

ss
ov

er
pr

ob
ab

ili
ty

Encoder SI (Pe)
Decoder SI (Pd)

Average (|Pd − Pe|)
Max (|Pd − Pe|)

(a) Akiyo

1 2 3 4 5

Bitplane level

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

C
ro

ss
ov

er
pr

ob
ab

ili
ty

Encoder SI (Pe)
Decoder SI (Pd)

Average (|Pd − Pe|)
Max (|Pd − Pe|)

(b) Foreman

Figure 5: Measurement of approximation accuracy for Akiyo and Foreman sequences. The crossover probability is defined as the probability
that the values of the source uk and side information do not fall into the same quantization bin. The average and maximum absolute
differences over all frames between the two crossover probabilities are also shown.

SI slk can be used by the encoder to estimate the level of
temporal correlation, which is again used to perform mode
switching and determine the encoding rate of the channel
codes applied to MBs in WZS-MB mode. Replacing the term
(x̂ek−1 − x̂bk) in (9) by slk, Einter is redefined as

Einter =
∑

MBi

∣

∣uk − slk
∣

∣. (12)

Clearly, the larger Eintra, the more bits will be required to re-
fine the bitplane in FGS-MB mode. Similarly Einter gives an
indication of the correlation present in the ith MB between
ulk and slk, which are approximations of uk and vk at the lth
bitplane, respectively. To code MBs in WZS-MB mode, we
can further approximate the ET optimal predictor in (4) by
taking into account both SIs, ul−1

k and slk, as follows: If sk is
within the quantization bin specified by ul−1

k , the EL predic-
tor is set to slk; however, if sk is outside that quantization bin,
the EL predictor is constructed by first clipping sk to the clos-
est value within the bin and then truncating this new value
to its l most significant bitplanes. For simplicity, we still de-
note the improved EL predictor of the lth bitplane as slk in the
following discussion.

At bitplane l, the rate of the channel code used to code uk,l

(or the sign bits that correspond to that bitplane) for MBs in
WZS-MB mode is determined by the encoder based on the
estimated conditional entropy H(uk,l | sk,l) (or H(sign(ulk) |
sign(slk)) ). For discrete random variables X and Y , H(X | Y)
can be written as

H(X | Y) =
∑

yi

Pr
(

Y = yi
)

H
(

X | Y = yi
)

, (13)

where both Pr(Y = yi) and H(X | Y = yi) can be easily
calculated once the a priori probability of X and the tran-
sition probability matrix are known. The crossover proba-
bility, for example p01 in Figure 4(a), is derived by counting

Table 1: Channel parameters and the a priori probabilities for the
3rd bitplane of frame 3 of Akiyo CIF sequence when BL quantization
parameter is 20 (with the same symbol notation as Figure 4).

Pr(uk,l = 1) p01 p10 Pr(sign(ulk) = 1) α β

0.13 0.019 0.14 0.49 0.13 0.001

the number of coefficients such that uk,l = 0 and uk,l �= sk,l.
Table 1 shows an example of those parameters for both uk,l

and the sign bits. Note that the crossover probabilities be-
tween uk,l and sk,l are very different for source symbols 0 and
1, and therefore an asymmetric binary channel model will
be needed to code uk,l as shown in Figure 4(a). However, the
sign bit has almost the same transitional probabilities when-
ever the input is−1 or 1, and is thus modelled as a symmetric
discrete memoryless channel in Figure 4(b).

In terms of complexity, note that there are two major
steps in this estimation method: (i) bitplane extraction from
sk and (ii) conditional entropy calculation (including the
counting to estimate the crossover probabilities). Bitplanes
need to be extracted only once per frame and this is done
with a simple shifting operation on the original frame. Con-
ditional entropy will be calculated for each bitplane based on
the crossover probabilities estimated by simple counting. In
Section 5, we will compare the complexity of the proposed
WZS approach and the ET approach.

4.4. Model-based estimation

In this section, we introduce a model-based method for cor-
relation estimation that has lower computational complexity,
at the expense of a small penalty in coding efficiency. The ba-
sic idea is to estimate first the probability density functions
(pdf) of the DCT residuals (uk, vk, zk = vk − uk), and then
use the estimated pdf to derive the crossover probabilities for
each bitplane.
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Figure 6: Crossover probability estimation. The shaded square re-
gions Ai correspond to the event where crossover does not occur at
bitplane l.

Assume that uk, vk, zk are independent realizations of the
random variables U , V , and Z, respectively. Furthermore, as-
sume that V = U + Z, with U and Z, independent. We start
by estimating the pdf ’s fU(u) and fZ(z). This can be done
by choosing appropriate models for the data samples, and
estimating the model parameters using one of the standard
parameter estimation techniques, for example, maximum-
likelihood estimation, expectation maximization (EM), and
so forth. Note that since the vk are not available in our en-
coder, we use sk to approximate vk in the model parameter
estimation.

Once we have estimated fU(u) and fZ(z), we can derive
the crossover probabilities at each bitplane as follows. Recall
that we consider there is no crossover when uk, vk fall into
the same quantization bin. This corresponds to the event de-
noted by the shaded square regions in Figure 6. Hence we
can find the estimate of the crossover probability at bitplane
l (denoted as p̂(l)) by

p̂(l) = 1− I(l), (14)

where I(l) is given by

I(l) =
∑

i

∫∫

Ai

fUV (u, v)dudv

=
∑

i

∫∫

Ai

fU(u) fV |U(v | u)dudv.
(15)

I(l) is simply the probability that U , V fall into the same
quantization bin. The conditional pdf fV |U(v|u) can be ob-
tained as

fV |U(v | u) = fZ(v − u), (16)
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Figure 7: Model parameters of uk estimated by EM using the video
frames from Akiyo.

and the integral in (15) can be readily evaluated for a vari-
ety of densities. In practice, we only need to sum over a few
regions, Ai, where the integrals are nonzero.

We found that U and Z can be well modeled by mixtures
of two zero-mean Laplacians with different variances. We use
the EM algorithm to obtain the maximum-likelihood esti-
mation of the model parameters, and use (15) and (16) to
compute the estimates of the crossover probabilities.

The main advantage of this model-based estimation ap-
proach as compared with the direct estimation is that it in-
curs less complexity and requires less frame data to be mea-
sured. In our experiment, the EM was operating on only
25% of the frame samples. Moreover, since the model pa-
rameters do not vary very much between consecutive frames
(Figure 7), it is viable to use the previous estimates to initial-
ize the current estimation and this can usually lead to con-
vergence within a few iterations. Once we have found the
model parameters, computing the crossover probability of
each bitplane from the model parameters requires only neg-
ligible complexity since this can be done using closed-form
expressions obtained from the integrals in (15). However, the
approach suffers some loss in compression efficiency due to
the inaccuracy in the estimation. We can assess the compres-
sion efficiency by evaluating the entropy function on the es-
timates of the crossover probabilities (which gives the theo-
retical limit in compressing the bitplanes given the estimates
[19]), and compare to that of the direct estimation. Exper-
iments using video frames from the Akiyo sequence show
that with base layer quantization parameter (QP) set to 31
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Figure 8: Diagram of WZS encoder and decoder. FM: frame memory, ME: motion estimation, MC: motion compensation, SI: side infor-
mation, BL: base layer, EL: enhancement layer, VLC: variable-length encoding, VLD: variable-length decoding.

and 20, the percentage differences in entropy are about 2.5%
and 4.7%, respectively. However, the percentage difference is
21.3% when the base-layer QP is set to 8. This large deviation
is due to the fact that with QP equal to 8, the base layer is of
very high quality, so that the distribution of U has a higher
probability of zero, which is not well captured by our model.
Note, however, that such high quality base layer scenarios are
in general of limited practical interest.

5. CODEC ARCHITECTURE AND IMPLEMENTATION
DETAILS

Figure 8 depicts the WZS encoding and decoding diagrams
implemented based on the MPEG-4 FGS codec. Let Xk, ̂Xb

k ,
and ̂Xe

k be the current frame, its BL, and EL reconstructed
frames, respectively.

5.1. Encoding algorithm

At the base layer, the prediction residual ek in the DCT do-
main, as shown in Figure 8(a), is given by

ek = T
(

Xk −MCk
[

̂Xb
k−1

])

, (17)

where T(·) is the DCT transform, and MCk[·] is the motion-
compensated prediction of the kth frame given ̂Xb

k−1. The re-
construction of ek after base-layer quantization and dequan-
tization is denoted by êbk .

Then, at the enhancement layer, as in Section 3.2, we de-
fine

uk = ek − êbk = T
(

Xk −MCk
[

̂Xb
k−1

])− êbk . (18)
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Figure 9: The block diagram of mode selection algorithm.

The encoder SI sk is constructed in a similar way as (11),
while taking into account the motion compensation and
DCT transform as

sk = T
(

MCk
[

Xk−1
]− ̂Xb

k

)

. (19)

Both uk and sk are converted into bitplanes.
Based on the switching rule given in Section 4.2, we de-

fine our mode selection algorithm as shown in Figure 9. At
each bitplane, we first decide the coding mode on the MB-
basis as in Figure 9(a), and then in each MB, we will de-
cide the corresponding modes at the DCT block level to in-
clude the two special cases ALL-ZERO and WZS-SKIP (see
Figure 9(b)). In either ALL-ZERO or WZS-SKIP modes, no
additional information is sent to refine the block. The ALL-
ZERO mode already exists in the current MPEG-4 FGS syn-
tax. For a block coded in WZS-SKIP, the decoder just copies
the corresponding block of the reference frame.1 All blocks
in FGS mode are coded directly using MPEG-4 FGS bitplane
coding.

For blocks in WZS mode, we apply channel codes to ex-
ploit the temporal correlation between neighboring frames.
Here, we choose low-density parity check (LDPC) codes
[19, 20] for their low probability of undetectable decod-
ing errors and near-capacity coding performance. A (n, k)
LDPC code is defined by its parity-check matrix H with size
n × (n − k). Given H , to encode an arbitrary binary input
sequence c with length n, we multiply c with H and output
the corresponding syndrome z with length (n − k) [19]. In
a practical implementation, this involves only a few binary

1 The WZS-SKIP mode may introduce some small errors due to the differ-
ence between the SI at the encoder and decoder.

additions due to the low-density property of LDPC codes.
At bitplane l, we first code the binary number uk,l for all co-
efficients in the WZS blocks, using LDPC codes to generate
syndrome bits at a rate determined by the conditional en-
tropy in (13). We leave a margin of about 0.1 bits above the
Slepian-Wolf limit (i.e., the conditional entropy) to ensure
that the decoding error is negligible. Then, for those coeffi-
cients that become significant in the current bitplane (i.e., co-
efficients that were 0 in all the more significant bitplanes and
become 1 in the current bitplane), their sign bits are coded
in a similar way using the sign bits of the corresponding sk as
SI.

The adaptivity of our scalable coder comes at the cost
of an extra coding overhead. It includes: (1) the prediction
modes for MBs and DCT blocks, (2) the a priori proba-
bility for uk,l (based on our experiments, we assume a uni-
form distribution for sign bits) and channel parameters, and
(3) encoding rate (1 − k/n). A 1-bit syntax element is used
to indicate the prediction mode for each MB at each bit-
plane. The MPEG-4 FGS defines the most significant bit-
plane level for each frame, which is found by first comput-
ing the residue with respect to the corresponding base layer
for the frame and then determining what is the minimum
number of bits needed to represent the largest DCT coef-
ficient in the residue. Clearly, this most significant bitplane
level varies from frame to frame. Note that representation
of many DCT blocks in a given frame is likely to require
fewer bitplanes than the maximum number of bitplanes for
the frame. Thus, for these blocks, the first few most sig-
nificant bitplanes to be coded are likely to be ALL-ZERO
(for these blocks, the residual energy after interpolation us-
ing the base layer is low, so that most DCT coefficients will
be relatively small). To take advantage of this, the MB pre-
diction mode for a given bitplane is not sent if all its six
DCT blocks are ALL-ZERO. Note also that the number of
bits needed to represent the MB mode is negligible for the



Huisheng Wang et al. 11

least significant bitplanes, as compared to the number of bits
needed to code the bitplanes. It is also worth pointing out
that this mode selection overhead is required as well for a
closed-loop coder that attempts to exploit temporal corre-
lation through the mode-switching algorithm. For an MB
in WZS-MB mode, the block mode (either WZS or WZS-
SKIP) is signaled by an additional 1-bit syntax. This overhead
depends on the number of MBs in WZS-MB mode, and a
good entropy coding can be applied to reduce the overhead,
since we have observed in our experiments that the two dif-
ferent modes have biased probabilities (see Figure 11). The
encoding rate of syndrome codes varies from 1/64 to 63/64
in incremental steps of size 1/64, and thus 6 bits are used
to code the selected encoding rate. We use a fixed-point 10
bit representation for the different kinds of probabilities to
be sent to the decoder. An example of the total overhead
percentage at each bitplane, which is calculated as the ratio
between the number of overhead bits and the number of to-
tal bits to code this bitplane, is given in Table 2 for News se-
quence.

5.2. Decoding algorithm

Decoding of the EL bitplanes of Xk proceeds by using the EL
reconstruction of the previous frame ̂Xe

k−1 to form the SI for
each bitplane. The syndrome bits received are used to decode
the blocks in WZS mode. The procedure is the same as at the
encoder, except that the original frame Xk−1 is now replaced
by the high quality reconstruction ̂Xe

k−1 to generate SI:

vk = T
(

MCk
[

̂Xe
k−1

]− ̂Xb
k

)

. (20)

The corresponding SI at each bitplane is formed by convert-
ing vk into bitplanes. The decoder performs sequential de-
coding since decoding a particular bitplane can only be done
after more significant bitplanes have been decoded.

We modified the conventional LDPC software [20, 21]
for the Slepian-Wolf approach by taking the syndrome infor-
mation into account during the decoding process based on
probability propagation. We follow a method similar to that
described in [19, 22] to force the search of the most probable
codeword in a specified coset determined by the syndrome
bits. One main difference is that the a priori probability of
the source bits uk,l (p0 = Pr(uk,l = 0) and p1 = 1− p0) is also
considered in the decoding process. The likelihood ratio for
each variable node at bitplane l is given by

LLR = log
Pr
(

uk,l = 1 | vk,l
)

Pr
(

uk,l = 0 | vk,l
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

log
p10

1− p01
+ log

p1

p0
, if vk,l = 0,

log
1− p10

p01
+ log

p1

p0
, if vk,l = 1,

(21)

Table 2: Coding overhead for News sequence.

Bitplane 1 2 3 4

Overhead percentage (%) 19.8 9.6 7.5 4.6

where pi j is the crossover probability defined in Figure 4(a).
The syndrome information is considered in the same way
as in [19] when calculating the likelihood ratio at the check
node.

5.3. Complexity analysis

In our approach, the base-layer structure is the same as
in an MPEG-4 FGS system. An additional set of frame
memory, motion compensation (MC) and DCT modules, is
introduced for the EL coding at both the encoder and de-
coder. The MC and DCT operations are only done once per
frame even for multilayer coding. In comparison, the ET ap-
proach requires multiple motion-compensation prediction
loops, each of which needs a separate set of frame mem-
ory, MC and DCT modules, as well as additional dequan-
tization and IDCT modules to obtain each EL reconstruc-
tion. More importantly, for each EL, the ET approach needs
to repeat all the operations such as reconstruction and pre-
diction. Though our proposed approach requires correlation
estimation at the encoder as discussed in Section 4, the ad-
ditional complexity involved is very limited, including sim-
ple shifting, comparison, and +/− operations. Therefore, the
proposed approach can be implemented in a lower complex-
ity even for multiple layers.

It should be noted that the complexity associated with
reconstructing the enhancement layers can be a significant
portion of the overall encoding complexity in a closed-
loop scalable encoder. While it is true that full search mo-
tion estimation (ME) (in base layer) may require a large
amount of computational power, practical encoders will em-
ploy some form of fast ME, and the complexity of ME mod-
ule can be substantially reduced. For example, [23] reports
that ME (full-pel and sub-pel) takes only around 50% of the
overall complexity in a practical nonscalable video encoder
employing fast ME. As a result, the complexity of closing
the loop (motion compensation, forward and inverse trans-
forms, quantization, and inverse quantization) becomes a
significant fraction of the overall codec complexity. More-
over, we need to perform these operations in every enhance-
ment layer in a closed-loop scalable system (while usually
we perform ME only in base layer). In addition to compu-
tational complexity reduction, our system does not need to
allocate the frame buffers to store the reconstructions in each
enhancement layer. This can lead to considerable savings in
memory usage, which may be important for embedded ap-
plications.

6. EXPERIMENTAL RESULTS

Several experiments have been conducted to test the perfor-
mance of the proposed WZS approach. We implemented a
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Figure 10: WZS-MB percentage for sequences in CIF and QCIF
formats (BL quantization parameter= 20, frame rate= 30 Hz).

WZS video codec based on the MPEG-4 FGS reference soft-
ware. In the experiments, we used the direct correlation es-
timation method, as it can lead to better compression effi-
ciency as compared the model-based approach.

6.1. Prediction mode analysis

In this section, we analyze the block prediction modes at each
bitplane for various video sequences. Figure 10 shows that
the percentage of MBs in WZS-MB mode exceeds 50% for
most video sequences (in some cases surpassing 90%, as in
bitplane 3 for Akiyo and Container Ship). Therefore there is
potentially a large coding gain over MPEG-4 FGS with our
proposed approach. The percentage of MBs in WZS-MB is
on average higher for low-motion sequences (such as Akiyo)
than for high-motion sequences (such as Coastguard), es-
pecially for lower significance bitplanes. Moreover, this per-
centage varies from bitplane to bitplane. For the most sig-
nificant bitplanes, the FGS-MB mode tends to be dominant
for some sequences (such as Akiyo and News), due to the low
quality of the EL reconstruction of the previous frame. When
the reconstruction quality improves, as more bitplanes are
decoded, the temporal correlation is higher and the WZS-
MB mode becomes dominant, for example, for bitplanes 2
and 3 in Figure 10. However, the WZS-MB percentage starts
to drop for even lower significance bitplanes. This is because
the temporal correlation decreases for these bitplanes which
tend to be increasingly “noise-like.”

The DCT block mode distribution in Figure 11 illus-
trates how the motion characteristics of the source sequence
affect the relative frequency of occurrence of each block
mode. The Akiyo sequence has a much larger WZS-SKIP per-
centage, and a larger percentage of WZ coded blocks, than
Coastguard; thus Akiyo sees more significant reductions in
coding rate when WZS is introduced. In contrast, for Coast-
guard, the percentage of blocks in WZS mode is less than

that in FGS mode starting at bitplane 4, thus showing that
as motion in the video sequence increases, the potential ben-
efits of exploiting temporal correlation in the manner pro-
posed in this paper decreases. Note that neither Figure 10 nor
Figure 11 include the least two significant bitplanes since the
PSNR ranges for these bitplanes are not of practical interest.

6.2. Rate-distortion performance

6.2.1. Coding efficiency of WZS

In this section we evaluate the coding efficiency of the pro-
posed WZS approach. Simulation results are given for a se-
ries of test sequences in CIF (352×288) and QCIF (176×144)
resolutions with frame rate 30 Hz. Akiyo and Container Ship
sequences have limited motion and low spatial detail, while
the Coastguard and Foreman sequences have higher motion
and more spatial detail. News sequence is similar to Akiyo,
but with more background motion.

In addition to the MPEG-4 FGS and nonscalable (single
layer) coding, we also compare our proposed approach with a
multilayer closed-loop (MCLP) system that exploits EL tem-
poral correlation through multiple motion-compensation
loops at the encoder. The same MPEG-4 baseline video coder
is used for all the experimental systems (note that the pro-
posed WZS framework does not inherently require the use
of a specific BL video coder). The first video frame is intra-
coded and all the subsequent frames are coded as P-frame
(i.e., IPPP. . .). The BL quantization parameter (QP) is set to
20. Prior to reporting the simulation results, we give a brief
description of our proposed system together with the MCLP
system.

Proposed WZS system

The DCT blocks are coded in four different modes as de-
scribed in Section 6.1. An LDPC code is used to code those
blocks in WZS mode at each bitplane to exploit the EL cor-
relation between adjacent frames. The encoding rate is deter-
mined by the correlation estimated at the encoder without
constructing multiple motion-compensation loops. To limit
the error introduced by WZS-SKIP mode due to the small
difference between the encoder and decoder SI, we disable
WZS-SKIP mode once every 10 frames in our implementa-
tion.

Multiple closed-loop (MCLP) system

This system is an approximation to the ET approach dis-
cussed in Section 3.1 through the mode-switching algorithm.
We describe the coding procedure for each enhancement
layer as follows. To code an EL which corresponds to the
same quality achieved by bitplane l in MPEG-4 FGS, the
encoder goes through the following steps. (i) Generate the
EL reconstruction of the previous frame up to this bitplane
level, which we denote x̂lk−1. (ii) Follow a switching rule sim-
ilar to that proposed for the WZS system to determine the
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Figure 11: Percentages of different block modes for Akiyo and Coastguard sequences (BL quantization parameter = 20, frame rate = 30 Hz).
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Figure 12: Comparison between WZS, nonscalable coding, MPEG-4 FGS, and MCLP for Akiyo and Container Ship sequences.

prediction mode of each MB, that is, inter-mode is chosen if
Einter < Eintra, and the FGS mode is chosen otherwise. Since
the EL reconstruction is known at the encoder, it can cal-
culate Einter directly using the expression of (9). (iii) Cal-
culate the EL residual rek following (5) by using x̂lk−1 as the
predictor for inter-mode, and the reconstruction of the cur-
rent frame with more significant ELs x̂l−1

k as the predictor
for FGS mode. (iv) Convert rek to bitplanes, and code those
bitplanes that are at least as significant as bitplane l (i.e.,
quantize to the lth bitplane) to generate the compressed bit-
stream.

Figures 12–14 provide a comparison between the pro-
posed WZS, nonscalable coder, MPEG-4 FGS, and the MCLP
coder. The PSNR gain obtained by the proposed WZS ap-
proach over MPEG-4 FGS depends greatly on the tempo-
ral correlation degree of the video sequence. For sequences
with higher temporal correlation, such as Akiyo and Con-
tainer Ship, the PSNR gain of WZS is greater than that for

lower temporal correlation sequences, such as Foreman, for
example, 3–4.5 dB PSNR gain for the former, as compared to
0.5–1 dB gain for the latter.

To demonstrate the efficiency of Wyner-Ziv coding for
WZS blocks, we compare the proposed coder to a simplified
version that uses only the ALL-ZERO, FGS, and WZS-SKIP
modes (which we call the “WZS-SKIP only” coder). The
“WZS-SKIP only” coder codes the WZS blocks in FGS in-
stead. Figure 15 shows that, for both Akiyo and Coastguard
sequences, there is a significant improvement by adding the
WZS mode. Note that the PSNR values for a given bit-
plane level are exactly the same for the two coders. The
only difference is the number of bits used to code those
blocks that are coded in WZS mode. Thus the coding gain
of Wyner-Ziv coding (exploiting temporal correlation) over
the original bitplane coding (that does not exploit tempo-
ral correlation) can be quantified as a percentage reduction
in rate. We present this in two different ways as shown in
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Figure 13: Comparison between WZS, nonscalable coding, MPEG-4 FGS, and MCLP for Coastguard and Foreman sequences.
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Figure 14: Comparison between WZS, nonscalable coding, MPEG-
4 FGS, and MCLP for News sequence.

Tables 3 and 4.2 Table 3 provides the rate savings for only
those blocks in WZS mode. It can be seen that Akiyo achieves
larger coding gain than Coastguard due to higher tempo-
ral correlation. Table 4 provides the overall rate savings (i.e.,
based on the total rate needed to code the sequence). These
rate savings reflect not only the efficiency of coding each
WZS block by Wyner-Ziv coding but also the percentage of
blocks that are coded in WZS mode.

2 It is usually required for an LDPC coder to have a large code length to
achieve good performance. If the number of WZS blocks is not enough
for the required code length, we force all blocks in the bitplane to be coded
in FGS mode instead. This happens, for example, for the most significant
bitplane of most sequences. Thus, only the results for bitplanes 2–4 are
shown in these tables.

Table 3: Rate savings due to WZS for WZS blocks only (percentage
reduction in rate with respect to using FGS instead for those blocks).

Bitplane level 2 3 4

Akiyo 24.66 31.20 26.71

Coastguard 19.98 22.91 19.19

Table 4: Overall rate savings due to WZS (percentage reduction in
overall rate as compared to FGS).

Bitplane level 2 3 4

Akiyo 10.98 16.61 16.11

Coastguard 8.38 8.68 6.08

As seen from Figures 12–14, there is still a performance
gap between WZS and MCLP. We compare the main features
of these two approaches that affect the coding performance
in Table 5. It should be clarified that occasionally, at very
high rate for low-motion sequences, the MCLP approach can
achieve similar (or even better) coding performance than the
nonscalable coder. That is because bitplane coding is more
efficient than nonscalable entropy coding when compress-
ing the high-frequency DCT coefficients. We believe that the
performance gap between WZS and MCLP is mainly due to
the relative inefficiency of the current channel coding tech-
niques as compared to bitplane coding. We expect that large
rate savings with respect to our present WZS implementa-
tion can be achieved if better channel codes are used, that can
perform closer to the Slepian-Wolf limit, or more advanced
channel coding techniques are designed for more complex
channels, which can take advantage of the existence of corre-
lation among channel errors.
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Figure 15: Comparison between WZS and “WZS-SKIP only” for Akiyo and Coastguard sequences.

Table 5: Comparisons between MCLP and WZS.

Multiple closed-loop approach Wyner-Ziv scalability approach

(1) Exploits temporal correlation through closed-loop
predictive coding.

(1) Exploits temporal correlation through Wyner-Ziv
coding.

(2) Efficient bitplane coding (run, end-of-plane) of the
EL residual in (5) to exploit the correlation between con-
secutive zeros in the same bitplane.

(2) Channel coding techniques designed for memory-
less channels cannot exploit correlation between source
symbols.

(3) The residual error between the source and EL refer-
ence from the previous frame may increase the dynamic
range of the difference and thus cause fluctuations in the
magnitude of residue coefficients (as the number of re-
finement iterations grows, the magnitude of residues in
some coefficients can actually increase, even if the over-
all residual energy decreases).

(3) The source information to be coded is exactly the
same as the EL bitplanes in MPEG-4 FGS, and there-
fore there are no fluctuations in magnitude and no ad-
ditional sign bits are needed.

(4) Each EL has to code its own sign map, and therefore
for some coefficients, the sign bits are coded more than
once.

(4) An extra encoding rate margin is added to compen-
sate for the small mismatch between encoder and de-
coder SI as well as for the practical channel coders which
cannot achieve the Slepian-Wolf limit exactly.

6.2.2. Rate-distortion performance versus
base layer quality

It is interesting to consider the effects of the base-layer qual-
ity on the EL performance of the WZS approach. We use
Akiyo, Container Ship, and News sequences in the experi-
ment. Table 6 shows the base-layer PSNR (for luminance
component only) for several sequences under different base-
layer quantization parameter (QP) values. The PSNR gains
obtained by the proposed WZS approach over MPEG-4 FGS
are plotted in Figure 16. The coding gain achieved by WZS
decreases if a higher quality base-layer is used, as seen from
Figure 16 when the base layer QP decreases to 8. That is be-
cause the temporal correlation between the successive frames

is already well exploited by a high-quality base layer. This ob-
servation is in agreement with the analysis in Section 3.1.

6.2.3. Comparisons with progressive fine granularity
scalable (PFGS) coding

The PFGS scheme proposed by Wu et al. [2] improves
the coding efficiency of FGS, by employing an additional
motion-compensation loop to code the EL, for which several
FGS bitplanes are included in the loop to exploit EL tempo-
ral correlation. Figure 17 compares the coding performance
between WZS and PFGS for Foreman sequence. WZS per-
forms worse than PFGS. In addition to the limitation of cur-
rent techniques for Wyner-Ziv coding, the performance gap
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Table 6: The base-layer PSNR (dB) for different QP.

Base-layer QP 31 20 8

Akiyo 32.03 33.61 38.05

Container Ship 26.97 28.93 34.11

News 29.17 31.23 36.09

may come from the difference of the prediction link struc-
ture between these two approaches. WZS creates a multilayer
Wyner-Ziv prediction link to connect the same bitplane level
in successive frames. However, in PFGS, usually at least two
or three FGS bitplanes are used in the EL prediction for all the
bitplanes. Thus, this structure is beneficial to the most sig-
nificant bitplanes (e.g., the 1st or 2nd bitplane) as they have
higher-quality reference than what they would in WZS.

On the other hand, our proposed WZS techniques can
be easily combined with a PFGS coder such that the more
significant bitplanes can be encoded in a closed-loop man-
ner by PFGS techniques, while the least significant bitplanes
are predicted through Wyner-Ziv links to exploit the remain-
ing temporal correlation. Figure 10 shows that for some se-
quences (especially those with low motion), the temporal
correlation for some lower significance bitplanes (e.g., bit-
plane 4) is still high, so that WZS-MB mode is chosen for
a considerable percentage of MBs. Thus, we expect that fur-
ther gain would be achieved with our techniques over what
is achievable with PFGS.

7. CONCLUSIONS AND FUTURE WORK

We have presented a new practical Wyner-Ziv scalable coding
structure to achieve high coding efficiency. By using prin-
ciples from distributed source coding, the proposed coder
is able to exploit the enhancement-layer correlation be-
tween adjacent frames without explicitly constructing mul-
tiple motion-compensation loops, and thus reduce the en-
coder complexity. In addition, it has the advantage of back-
ward compatibility with standard video codecs by using a
standard CLP video coder as base layer. Two efficient meth-
ods are proposed for correlation estimation based on differ-
ent tradeoff between the complexity and accuracy at the en-
coder even when the exact reconstruction value of the pre-
vious frame is unknown. Simulation results show much bet-
ter performance over MPEG-4 FGS for sequences with high
temporal correlation and limited improvement for high-
motion sequences. Though we implemented the proposed
Wyner-Ziv scalable framework in the MPEG-4 FGS software
as bitplanes, it can be integrated with other SNR scalable cod-
ing techniques.

Further work is needed within the proposed framework
to improve coding efficiency and provide flexible band-
width adaptation and robustness. In particular, the selec-
tion of efficient channel coding techniques well suited for
distributed source coding deserves additional investigation.
Another possible reason for the gap between our proposed
coder and a nonscalable coder is due to less accurate motion
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Figure 16: The PSNR gain obtained by WZS over MPEG-4 FGS for
different base-layer qualities.

compensation prediction in the enhancement layer when
sharing motion vectors with the base layer. This can be im-
proved by exploring the flexibility at the decoder, an impor-
tant benefit of Wyner-Ziv coding, to refine the enhancement-
layer motion vectors by taking into account the received
enhancement-layer information from the previous frame.
In terms of bandwidth adaptation, the current coder can-
not fully achieve fine granularity scalability, given that the
LDPC coder can only decode the whole block at the bitplane
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quence (base layer QP = 19, frame rate = 10 Hz). The PFGS results
are provided by Wu et al. from [24].

boundary. There is recent interest on punctured LDPC codes
[25], and the possibility of using this code for bandwidth
adaptation is under investigation. In addition, it is also in-
teresting to evaluate the error resilience performance of the
proposed coder. In principle, the Wyner-Ziv coding has more
tolerance on noise introduced to the side information.
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latter is a crucial application since the exponential growth
of audiovisual data, along with the critical lack of tools to
record the data in a well-structured form, is rendering useless
vast portions of available content. To overcome this problem,
there is need for technology that is able to produce accurate
levels of abstraction in order to annotate and retrieve con-
tent using queries that are natural to humans. Such technol-
ogy will help narrow the gap between low-level features or
content descriptors that can be computed automatically, and
the richness and subjectivity of semantics in user queries and
high-level human interpretations of audiovisual media.

This special issue focuses on truly integrative research tar-
geting of what can be disparate disciplines including image
processing, knowledge engineering, information retrieval,
semantic, analysis, and artificial intelligence. High-quality
and novel contributions addressing theoretical and practical
aspects are solicited. Specifically, the following topics are of
interest:

• Semantics-based multimedia analysis
• Context-based multimedia mining
• Intelligent exploitation of user relevance feedback
• Knowledge acquisition from multimedia contents
• Semantics based interaction with multimedia
• Integration of multimedia processing and Semantic

Web technologies to enable automatic content shar-
ing, processing, and interpretation

• Content, user, and network aware media engineering
• Multimodal techniques, high-dimensionality reduc-

tion, and low level feature fusion
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When designing a system for image acquisition, there is gen-
erally a desire for high spatial resolution and a wide field-
of-view. To achieve this, a camera system must typically em-
ploy small f-number optics. This produces an image with
very high spatial-frequency bandwidth at the focal plane. To
avoid aliasing caused by undersampling, the corresponding
focal plane array (FPA) must be sufficiently dense. However,
cost and fabrication complexities may make this impractical.
More fundamentally, smaller detectors capture fewer pho-
tons, which can lead to potentially severe noise levels in the
acquired imagery. Considering these factors, one may choose
to accept a certain level of undersampling or to sacrifice some
optical resolution and/or field-of-view.

In image super-resolution (SR), postprocessing is used to
obtain images with resolutions that go beyond the conven-
tional limits of the uncompensated imaging system. In some
systems, the primary limiting factor is the optical resolution
of the image in the focal plane as defined by the cut-off fre-
quency of the optics. We use the term “optical SR” to re-
fer to SR methods that aim to create an image with valid
spatial-frequency content that goes beyond the cut-off fre-
quency of the optics. Such techniques typically must rely on
extensive a priori information. In other image acquisition
systems, the limiting factor may be the density of the FPA,
subsequent postprocessing requirements, or transmission bi-
trate constraints that require data compression. We refer to
the process of overcoming the limitations of the FPA in order
to obtain the full resolution afforded by the selected optics as
“detector SR.” Note that some methods may seek to perform
both optical and detector SR.

Detector SR algorithms generally process a set of low-
resolution aliased frames from a video sequence to produce
a high-resolution frame. When subpixel relative motion is
present between the objects in the scene and the detector ar-
ray, a unique set of scene samples are acquired for each frame.
This provides the mechanism for effectively increasing the
spatial sampling rate of the imaging system without reduc-
ing the physical size of the detectors.

With increasing interest in surveillance and the prolifera-
tion of digital imaging and video, SR has become a rapidly
growing field. Recent advances in SR include innovative al-
gorithms, generalized methods, real-time implementations,

and novel applications. The purpose of this special issue is
to present leading research and development in the area of
super-resolution for digital video. Topics of interest for this
special issue include but are not limited to:

• Detector and optical SR algorithms for video
• Real-time or near-real-time SR implementations
• Innovative color SR processing
• Novel SR applications such as improved object

detection, recognition, and tracking
• Super-resolution from compressed video
• Subpixel image registration and optical flow
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In recent years, increased demand for fast Internet access and
new multimedia services, the development of new and fea-
sible signal processing techniques associated with faster and
low-cost digital signal processors, as well as the deregulation
of the telecommunications market have placed major em-
phasis on the value of investigating hostile media, such as
powerline (PL) channels for high-rate data transmissions.

Nowadays, some companies are offering powerline com-
munications (PLC) modems with mean and peak bit-rates
around 100 Mbps and 200 Mbps, respectively. However,
advanced broadband powerline communications (BPLC)
modems will surpass this performance. For accomplishing it,
some special schemes or solutions for coping with the follow-
ing issues should be addressed: (i) considerable differences
between powerline network topologies; (ii) hostile properties
of PL channels, such as attenuation proportional to high fre-
quencies and long distances, high-power impulse noise oc-
currences, time-varying behavior, and strong inter-symbol
interference (ISI) effects; (iv) electromagnetic compatibility
with other well-established communication systems work-
ing in the same spectrum, (v) climatic conditions in differ-
ent parts of the world; (vii) reliability and QoS guarantee for
video and voice transmissions; and (vi) different demands
and needs from developed, developing, and poor countries.

These issues can lead to exciting research frontiers with
very promising results if signal processing, digital commu-
nication, and computational intelligence techniques are ef-
fectively and efficiently combined.

The goal of this special issue is to introduce signal process-
ing, digital communication, and computational intelligence
tools either individually or in combined form for advancing
reliable and powerful future generations of powerline com-
munication solutions that can be suited with for applications
in developed, developing, and poor countries.

Topics of interest include (but are not limited to)

• Multicarrier, spread spectrum, and single carrier tech-
niques

• Channel modeling

• Channel coding and equalization techniques
• Multiuser detection and multiple access techniques
• Synchronization techniques
• Impulse noise cancellation techniques
• FPGA, ASIC, and DSP implementation issues of PLC

modems
• Error resilience, error concealment, and Joint source-

channel design methods for video transmission
through PL channels
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The cross-fertilization between numerical linear algebra and
digital signal processing has been very fruitful in the last
decades. The interaction between them has been growing,
leading to many new algorithms.

Numerical linear algebra tools, such as eigenvalue and sin-
gular value decomposition and their higher-extension, least
squares, total least squares, recursive least squares, regulariza-
tion, orthogonality, and projections, are the kernels of pow-
erful and numerically robust algorithms.

The goal of this special issue is to present new efficient and
reliable numerical linear algebra tools for signal processing
applications. Areas and topics of interest for this special issue
include (but are not limited to):

• Singular value and eigenvalue decompositions, in-
cluding applications.

• Fourier, Toeplitz, Cauchy, Vandermonde and semi-
separable matrices, including special algorithms and
architectures.

• Recursive least squares in digital signal processing.
• Updating and downdating techniques in linear alge-

bra and signal processing.
• Stability and sensitivity analysis of special recursive

least-squares problems.
• Numerical linear algebra in:

• Biomedical signal processing applications.
• Adaptive filters.
• Remote sensing.
• Acoustic echo cancellation.
• Blind signal separation and multiuser detection.
• Multidimensional harmonic retrieval and direc-

tion-of-arrival estimation.
• Applications in wireless communications.
• Applications in pattern analysis and statistical

modeling.
• Sensor array processing.
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