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ABSTRACT

A key part of any efficient source coder involves the opti-
mal allocation of bit rate among a discrete set of competing
quantization choices, as employed in the selected coding
paradigm. This can be classified under the general label of
budget-constrained discrete optimization, with coding ap-
plications including optimal bit allocation in scalar or vec-
tor quantizer based frameworks, entropy-constrained quan-
tization frameworks, and codebook search for scalar-vector
quantization (SVQ). For this class of problems, dynamic
programming (DP) methods (such as the Viterbi algorithm)
provide the optimal solution. However DP is typically very
costly computationally. An alternate technique to solving
this class of problems uses Lagrange mulipliers. This ap-
proach is much more efficient than DP but cannot guaran-
tee optimality in general as it limits itself to convex-hull
operating points, which may be sparse in many applica-
tions. In this work, we propose a novel hybrid technique
that combines the speed of the Lagrangian approach with
the versatility of the DP technique that is aimed at extract-
ing the “best of both worlds.” We present an application
of our hybrid technique to the codebook search problem for
SVQ, demonstrating significantly improved speed over the
previously proposed DP-based search methods while miti-
gating the suboptimality of the Lagrangian based approach.

1. INTRODUCTION

With an increasing demand for efficiently compressed rep-
resentation of images and video signals, the task of opti-
mal bit allocation has assumed renewed importance: how
should the available resources (coding rate R) be allocated
to minimize the coding distortion D (measured using some
metric)? Rate-distortion (R-D) optimization pervades all
of source coding, both from an information-theoretic stand-
point as well as for the design of practical coding systems
(where the term operational rate-distortion is used). Appli-
cations include the traditional design of off-line vector quan-
tizers (VQ) based on optimization of statistical training
data [1], as well as more recent non-training based frame-
works where the encoder makes “on the fly” decisions on
how many bits to assign to different coding units in the
system [2], or how to find the best subtree of a global quan-
tization and/or transform tree [3, 4, 5]. An example of the
benefits of R-D optimized allocation can be found in [6],
where an R-D optimization of the zerotree coding frame-
work of [7] results in significant performance gain.
Typically, an operational R-D optimization problem in-
volves the specification of the choice of coding parameters in
the picked framework which minimize the coding distortion
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for a given available bit rate budget. A key point is that
the set of parameters is a discrete set therefore dictating the
use of discrete optimization techniques. The encoder’s task
is then to find a good (if not optimal) operating point from
the available discrete set of operating points, i.e. to search
through the operational R-D space for the point which has
the least distortion while not exceeding the target rate. An
additional requirement is obviously that the search be com-
putationally efficient.
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Figure 1. Lagrangian optimization using the con-
stant slope method. The convex hull solution is
determined as the first point hit by a plane wave
of slope —1/A. The corresponding minimum cost is
represented as a D-intercept of the plane wave. The
shaded area corresponds to points that can be po-
tentially optimal but cannot be reached using con-
vex hull techniques. For example, if the rate budget
was Rt we would have to settle for the nearest con-
vex hull point below Rr.

In this paper we will describe efficient ways of finding
this operating point for the important class of block-based
coders which consist of independently coded blocks that can
change their coding parameters (e.g. quantizers) on a block
by block basis. In this regard, our problem framework is
similar to that considered by Shoham and Gersho [2] with
the vital distinction that we do not restrict ourselves to op-
erating points that are on the convex hull of the coder’s R-
D characteristic (see Fig. 1 for an example of a non-convex
hull solution which is not attainable by the Lagrange mul-
tiplier based method of [2].) Typical examples of the ap-
plication scope of our proposed technique include coding
of intraframe (I-frame) blocks in MPEG (which typically
occupy 75% of the overall budget), entropy-constrained
scalar/vector quantization (ECSQ/ECVQ) [8, 9], and in
general any block-coding type framework where convex-hull
operating points will not suffice in general. An illuminating
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example of such a framework involves the problem of op-
timal codebook search for the recently introduced Scalar-
Vector Quantizer (SVQ) [10] which is a structured fixed-rate
quantizer that approximates the performance of ECSQ. We
will present experimental results in Section 4 verifying the
superior performance of our proposed technique over the
(standard) dynamic-programming (DP)-based method pro-
posed in [10] for the SVQ codebook search problem.

We now provide a brief motivation for our proposed
method, a hybrid between the Lagrangian-based and DP-
based optimization techniques.

The Lagrangian-based optimization addressed in [2] has
the advantage of being fast but, as mentioned, has the draw-
back of achieving solutions that lie strictly on the convex
hull of the available rate distortion characteristic. While
this is not a major problem when the convex-hull is densely
populated, sparse convex-hull sets are problematic and may
result in unacceptably suboptimal performance. This can
occur in practical scenarios in tree-based coding when try-
ing to operate at low rates, as mentioned in [4]. Note that
the suboptimality of the Lagrangian approach stems from
the fact that the set of operating points is discrete. In a
continous optimization problem where all optimal operat-
ing points necessarily live on the convex hull of the R-D
curve, the Lagrangian approach will always yield the opti-
mal operating point. While in the discrete case, statistical
“time-sharing” of convex hull operating points can optimize
performance [3], this is usually not feasible in most image
coding applications, where a “one-time” coding of the image
blocks is called for.

At the other end of the spectrum lives the class of DP-
based techniques which are guaranteed to find the optimal
operating point, whether or not they are convex-hull res-
idents (see Section 3.1 for details). Indeed, for the SVQ
codebook search problem, Laroia and Farvardin in [10] pro-
pose such a DP-based method to find the optimal oper-
ating point. The main drawback of the DP technique is
that optimality comes at the price of a substantial increase
in complexity, and indeed for most practical “on-line” im-
age coding scenarios, dynamic programming is out of the
question unless the number of candidate operating points
is small or can be reduced.

In this paper, we introduce a novel hybrid method that
is targeted at combining the advantages of the Lagrangian
and DP-based approaches. The basic idea is to use the
fast Lagrangian-based solution as an initial guess for a DP-
based technique that has a fraction of the complexity of
the regular full-DP approach. We will demonstrate how
our proposed technique finds application in formulating a
much improved way of solving the SVQ codebook search
compared to the DP-based approach suggested in [10]. Al-
though we use SVQ as a vehicle to demonstrate our tech-
nique, we emphasize that its scope of application is quite
broad, and includes any R-D optimization framework where
convex-hull-only operating points may not suffice. Indeed,
its scope extends beyond image coding or even engineering,
as it addresses the universal problem of optimal resource
allocation in a discrete optimization setting [11].

The paper is organized as follows. In Section 2 we for-
mulate the bit allocation problem In Section 3 we describe
the two above-mentioned techniques, DP and Lagrangian
optimization. In Section 4 we introduce a set of hybrid
techniques which will allow us to trade off performance and
complexity. Finally, in Section 5 we present the results of
applying this new technique to codebook search for SVQ.

2. PROBLEM FORMULATION

Suppose we have N input blocks, with M different quan-
tizers being available to quantize each block. Assume that
the rate and the distortion, ri(y) and di(j) respectively, for
each block ¢ and quantizer j are known. Our goal is to find,

among all the possible allocations x such that a quantlzer
z(i) is assigned to block i, the optimal allocation x* which
minimizes the total distortion

x" = arg m)}nZdi(x(i)) (1)

while not exceeding the predetermined rate budget Rr,i.e.,

N

> ri(a"(i) < Rr. (2)

i=1

This scenario can be encountered for example in block-
based DCT image coding where each input block in the
above formulation corresponds to a DCT coded block and
each of the quantizers corresponds to a choice of quantiza-

tion scale as in MPEG.

3. STANDARD OPTIMIZATION
TECHNIQUES

3.1. Lagrangian Optimization

The Lagrange multiplier method has been a popular choice
for the above problem [2]. The basic idea is to introduce
the Lagrangian cost

N

Z (3) + Mri(4)). (3)

Then the search is performed by choosing, for a given
Lagrange multiplier A, the quantizer J(X) which minimizes
the cost di(j) + )\r.(]) at a given stage. The goal is then
to find the Lagrangian cost which results in a total rate

Zf\] LT i(J) that is just below the desired budget Rr. If the

budget is exactly met then this solution is also optimal.

This technique has a limitation of reaching only the code-
vectors on the convex hull of the R-D characteristics (see
Fig. 1) and thus only approximates the performance of the
optimal DP-based algorithms. This shortcoming could be
crucial in problems such as SVQ where the block sizes are
small and where the convex hull is sparse.

3.2. Dynamic Programming

To optimally solve the above allocation problem we can
alternatively resort to dynamic programming (DP). The al-
gorithm sequentially builds a trellis to represent possible
solutions. Refer to Fig. 2 where the x axis corresponds to
the stage (or input block) and the y axis represents the ac-
cumulated rate. Each trellis stage corresponds to one of
the N inputs and each trellis state is associated with the
accumulated distortion and rate. For example, consider the
node (¢,s) in the trellis which represents a solution for which
s bits have been used up to block 2 at a total distortion cost
A. Then if we select quantizer j for block 14+ 1 we will gen-
erate a branch connecting (7,s) to (i+1,s+r;41(j)) and the
accumulated distortion will be A + di41(j). DP can then
be used in the usual way to prune out the trellis. Based
on Bellman’s optimality principle of all paths arriving to
a node only the one have less distortion has any chance of
being globally optimal. Thus we can eliminate out of all
the paths with the same total rate at a given stage, those
with larger distortion.

This method has the advantage of achieving solutions
that are not reachable using the Lagrangian method. This is
particularly useful when, as is the case in SVQ, there might
be “gaps” in the convex hull. However the major drawback
is that the complexity of the search grows linearly with the
number of states. Since for each stage (or block) each state



represents a possible total rate, it is clear that the number
of states and thus the complexity will increase linearly with
the rate budget Rr, thus making this technique impractical
in many situations. While this method can be efficient for
small vector size SVQ it would clearly not be useful for bit
allocation in a large image!
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Figure 2. DP and Buffer-constrained DP optimiza-
tion. In the general DP case the number of states
grows linearly. When the “buffering” constraint is
introduced the number of states at each stage is
kept constant. The states are allowed only between
the buffer state bounds denoted by the dashed lines.
In this example for the chosen buffer size the op-
timal solution cannot be achieved. However note
that one could always find a sufficiently large buffer
that would not prune out the optimal DP solution.

4. LAGRANGIAN-INITIALIZED BUFFERED
OPTIMIZATION

4.1. Buffer constrained DP optimization

Since the linear growth in the number of states in the DP
formulation is the major obstacle to its applicability for
large input sizes we first propose a method to maintain a
fixed number of states in order to reduce the computational
burden. Consider ¥ = Rr /N, the average rate per block, as
the average value that is allocated to each block by the op-
timal solution. Then, the “average” solution path through
the trellis can be defined as that one where most branches
use rate close to 7. Note that this may not correspond to
an actual path since ¥ may not be integer but we use it to
illustrate the idea. Now, the basic idea is to assume that
most paths will not deviate too much from the average path
and thus we introduce a new state, b; at stage ¢ as

b, =s; — T, (4)

where s; is the state at stage 1 as initially introduced in
the previous section. This can be seen to be equivalent to
considering b; as a virtual buffer state. This virtual buffer
keeps track of how much each path deviates in rate from
the average path. Since most paths tend to be close to
the average, we can impose an additional constraint so that
the admissible solutions x not only need to have total rates
bounded by Rr but also cannot exceed certain finite buffer
state bounds at every stage . Hence we now search for the
minimum distortion solution satisfying,

bmin < b; < bmas for all 7, (5)

as well as the constraint (7), where byin and bmas are ap-
propriately chosen buffer state bounds®. With this change

2We emphasize that there is no actual buffer at the encoder
and we just use the analogy between buffer-constrained allocation

the same DP techniques can be used except that now the
number of states is constant (as defined by our choice of
buffer size).

In this formulation, which is analogous to the buffer con-
strained optimization of [12], the main benefit is that the
number of states is kept constant and thus complexity is
kept reasonable even for large N. The additional constraint
may potentially eliminate the true optimal solution (see
Fig. 2), however, in general we can expect that this will
not occur often (and thus suboptimality will be limited).
Note, however that a large enough buffer can always be
found such that the optimal solution can still be achieved.

4.2. Lagrangian-initialized Buffer Constrained
Optimization

The new proposed technique is based on the intuitively ob-
vious fact that even though a convex hull solution may not
be optimal it may be close to the optimal solution. We
thus first run the Lagrangian algorithm and then use this
solution as our initial guess. This is accomplished by em-
ploying the buffered optimization introduced in Section 4.1
but using the Lagrangian solution as the virtual channel rate
instead of F.

More formally, let r;(A) be the optimal rate assignment
using the Lagrangian technique for the value of A which re-
sults in a total rate closest to (but smaller than) the budget.

Then we define a new virtual buffer state b; for block 2 as
b =s— ri(A) (6)

we then apply the buffer constrained optimization algo-
rithm of section 3.2 to find the optimal solution. In this
manner we are bounding the solution to be close to that of
the Lagrangian technique. For sufficiently large buffer size
we can guarantee that the optimal solution will be achieved,
as confirmed by our experiments. Since the Lagrangian
technique already gives a good approximation the impor-
tant point to note is that the buffer size needed to guarantee
optimality will typically be small. Note also that while other
Lagrangian techniques to reach non-convex hull points have
been proposed [2] they do not guarantee optimality.

5. APPLICATION TO SVQ

5.1. Scalar-Vector Quantization

Scalar-vector quantization (SVQ), a fixed-rate VQ scheme,
has been proposed to approximate the performance of
ECSQ while being robust in noisy environments [10]. SVQ
is theoretically justified by the asymptotic equipartition
property (AEP) for ii.d. random variables [13]. From
the AEP, a code with fixed-length close to n-times the
source entropy can represent most of the sample sequences
of length n with minimal error. The basic idea of SVQ is
to use an underlying scalar quantizer (USQ) and associate
a “length” based on the sample entropy to each of its quan-
tization levels. Of all possible combinations of USQ levels,
only those with sample entropies (i.e., the total length) no
greater than a threshold are made part of the codebook.
The threshold is determined so that the total number of
codevectors in the codebook matches the design rate for
SVQ.

SVQ quantizes an input vector by choosing, among all the
combinations of USQ levels, the one which minimizes the
distortion without exceeding the threshold. More formally,
an m-dimensional rate-n scalar-vector quantizer (SVQ) can
be defined by its parameter triple (Q, £, L), i.e., (i) @, the
set of the n (n > 2") levels g; of an underlying scalar quan-
tizer (USQ), (ii) £, the set of the corresponding lengths ¢;
based on the source entropy, and (iii) L, a threshold on the

and the SVQ encoder to clarify our algorithm. Also note that
bmin can be negative.



total length Z:;l £(zr) for a codevector z = (21, -, zm)

where £(zx) € L is the length of zx. Scalar quantizing m
samples is conceptually equivalent to vector quantizing an
m-vector with a VQ codebook containing all n™ possible
combinations in Q™. The SVQ codebook contains only
codevectors such that

Y U <L (7)

where L limits the codebook size (< 2™") making SVQ
fixed-bit-rate.

We can readily see that SVQ encoding is analogous to
the allocation problem introduced in Section 2, where the
rate r;(j) is replaced by the length associated to each quan-
tization level £(zx) and the rate budget Rt is replaced by
the length threshold, L. Thus all the described techniques
can be applied in the SVQ context. In this particular case
the allocation problem results in a sparse R-D characteristic
and it is thus a perfect testbed for our algorithm.

5.2. Experimental Results

We now compare four codebook search schemes which rep-
resent the four resource allocation algorithms discussed in
this paper. These are: (i) optimal (full search) DP (SVQ),
the method originally proposed in [10], (ii) Lagrangian ap-
proximation (L-SVQ), (iii) buffer-constrained DP (B-SVQ),
and (iv) Lagrangian-initialized buffer-constrained DP (LB-
SVQ). Note that our results do not affect the codebook
design, only the codebook search.

Results are provided for a Gaussian sequence of 80,000
i.i.d. samples with Gaussian distribution N(0,1%). For all
three schemes we use identical SVQ parameters (Q, £, L)
designed on a distinct training set of 40,000 samples with
N(0,1%) using the methods in [10]. The SVQ rate is r =
2.0 (bits/sample) and the number of the USQ quantization
levels is n = 7.

As discussed above the buffer size in buffer-constrained
DP environments can be selected so as to guarantee that
the optimal solution is achieved. In this case we obtain the
minimum buffering requirements to guarantee optimality
for the given codebook. We denote By and Bj, respec-
tively, the upper and lower bounds on the buffer state that
guarantee that the optimal DP solution is still achieved. In
our results B-SVQ py; denotes the buffer constrained code-
book search where P% indicates the buffer size relative to
the buffer requirements determined by By and Bp. Thus
B-SVQiqoy% results in optimal performance (equal to SVQ)
while decreasing values of P produce suboptimality but al-
low faster search.

The data obtained for L-SVQ are plotted also in Fig. 3.
Compared to the other schemes, the codebook search by
L-SVQ is extremely fast. However, we can observe the sub-
optimality due to the non-convex hull points. We finally
experiment with LB-SVQ where we use By and By, for the
buffering constraint. The performance of LB-SVQ is, as we
expected, optimal for all vector dimensions while the re-
duction in search time is very significant (over an order of
magnitude with respect to DP).
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