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Abstract

The study of quantized overcomplete (redundant) expansions is relevant to several

important applications such as oversampled A/D conversion of band-limited sig-

nals, multiple description quantization, joint source-channel coding and content-

based retrieval for image databases. The problem of quantization of overcomplete

expansions is not as well understood as that of quantization of more traditional

critically sampled (non-redundant) expansions. As an example, in the latter case,

one can minimize the overall distortion by minimizing the distortion indepen-

dently in each of the expansion coefficients. This is not true for an overcomplete

expansion.

Previous research work to date has assumed only simple quantization schemes

and has focused on finding improved reconstruction algorithms. In our work, we

study different issues related to overcomplete expansions, focusing on designing

efficient quantization techniques for this type of decompositions. More specifi-

cally, the following topics are studied:
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(i) We propose new quantization designs for overcomplete expansions in RN .

Our approach is to design jointly the overcomplete decomposition together with

the quantization scheme so that the whole system is equivalent to a regular vector

quantizer in RN having a periodic structure. The periodic structure can be

characterized by using lattice intersections.

(ii) We show how the periodicity property makes it possible to achieve good ac-

curacy with low complexity, by analyzing linear reconstruction in periodic quan-

tizers and providing also some other low complexity reconstruction schemes which

can be implemented thanks to the presence of a periodic structure.

(iii) Given an intersection lattice Λ, we provide general methods to decompose

it as the intersection of simpler lattices which are nested in Λ. We also give

concrete decompositions for most of the best known lattices giving rise to different

periodic quantizers with different tesselations.

(iv) We obtain an expression for the effective normalized second moment G

of a periodic quantizer, which characterizes its rate-distortion performance at

high rates. We analyze the complete structure of the tesselations generated by

some of the derived lattice decompositions and evaluate the value of G for the

corresponding periodic quantizers.

(v) We analyze angular oversampling in the presence of quantization for over-

complete 2D filter banks in `2(Z2) which are steerable under rotation. We define

two “consistency” constraints, one due to the steerability property and the other

xxi



one due to the quantization itself, and make use of them in order to increase

the accuracy in the representation with the number of orientations by using two

main techniques in conjunction with Lie theory: a) Projection on Convex Sets

(POCS) and b) Linear programming principles.

(vi) We define energy-based features which are steerable under rotation and

which are based on steerable transforms, and apply them to the problem of

Rotation Invariance in content-based image retrieval. We define a similarity

measurement where the features of different images are compared only after they

have been previously aligned. This capability can not be achieved by a regular

wavelet transform.
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Chapter 1

Introduction

Quantized redundant expansions are useful in different applications such as over-

sampled A/D conversion of band-limited signals [39, 40, 42, 84, 111, 60], multiple

description quantization [59][58], joint source-channel coding [53], content-based

retrieval [88] and pattern recognition [101, 99]. The overcompleteness provides

two important advantages, namely, an increase in design freedom [38] and robust-

ness against noise. One of the most important applications is the analog-to-digital

conversion of band-limited signals, where instead of achieving accuracy by using

high rate quantization of the amplitude (having to use complex and expensive

analog circuitry of high precision), accuracy is attained by performing an over-

sampling in the time axis (timing accuracy is easier to achieve in VLSI), that

is, sampling at a rate above the Nyquist rate, and exploiting this redundancy

to reduce the information which is lost after quantizing the amplitude with low

resolution (oversampled A/D).
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The accuracy that can be attained with quantized overcomplete expansions

depends on two factors: the reconstruction algorithm and the quantization scheme

that are used. In the context of overcomplete expansions in RN , as we will see in

Chapter 2 an equivalent vector quantizer (EV Q) can be defined given a quantized

redundant expansion, where the quantized vector is given by the reconstruction

vector obtained from the quantized coefficients of the redundant expansion by

applying some reconstruction algorithm. That is, projecting a signal x on an

overcomplete set of vectors, applying a set of scalar quantizers over the cor-

responding set of coefficients and obtaining a reconstructed vector x̂ from the

quantized coefficients using some reconstruction algorithm can be seen as equiv-

alent to a vector quantizer EV Q in RN where EV Q(x) = x̂.

There has been extensive research work aimed at finding reconstruction al-

gorithms that maximize the asymptotic rate of decrease of MSE with the re-

dundancy of the overcomplete expansion. Reconstruction algorithms have been

studied based on two main approaches. The first one is based on modeling the

quantization noise as an additive white noise uncorrelated with the signal that

is quantized. These models are sometimes convenient for analysis and lead to

useful results in some scenarios [16, 63]. The second one is completely based on a

deterministic analysis of the quantization noise, which have given rise to several

proposed reconstruction algorithms [84, 111, 60, 40]. We discuss in Chapter 2 the

2



different issues related to these algorithms and the simple linear reconstruction

algorithm.

However, the quantization scheme has been always assumed to be a uniform

scalar quantization with the same stepsize for all expansion coefficients. One of

the issues that is addressed in our work is to study whether using different step-

sizes to quantize the coefficients can lead to improvements in the rate-distortion

performance when reconstructing with simple reconstruction algorithms. Notice

that simple reconstructions (e.g. linear or look-up table) are normally prefered for

practical reasons. In general, our goal is to have an encoder having a complexity

which is similar to that of standard systems, allowing to use simple reconstruc-

tion algorithms without a loss in accuracy with respect to more sophisticated

reconstruction techniques. The fundamental idea to achieve this goal is to de-

sign jointly the overcomplete expansion together with the quantization system by

choosing carefully the stepsizes of the scalar quantizers so that the whole system

is equivalent to a vector quantizer EVQ in RN with a periodic structure. This

periodic structure can be conveniently characterized and parameterized in terms

of lattice intersections, more specifically, the overcomplete expansion together

with the set of scalar quantizers effectively generate a set of different lattices

{Λ1,Λ2, · · · ,Λr} such that their intersection Λ is not empty. The periodicity

of the quantizers has a unit cell whose structure is repeated and this unit cell

is given by the fundamental Voronoi cell of the intersection lattice that we call
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Coincidence site lattice. We show that periodicity in the EVQ is a necessary

condition in order for the EVQ to be a regular quantizer.

From this connection with lattice theory, in Chapter 3, we then consider

the construction of periodic quantizers such that the intersection lattice is a

good lattice. Thus, given a good lattice Λ (e.g., such that QΛ is a good lattice

quantizer), we want to find a set of simple lattices {Λ1,Λ2, · · · ,Λr} such that their

intersection is not empty. The main reason for investigating this problem is that if

Λ is a good lattice, we expect the multiple description quantizer (QΛ1 , · · · , QΛr)

which quantizes simultaneously an input vector x with respect to each of the

Λi’s, to be also a good periodic quantizer. We analyze general constructions

for writing a lattice as an intersection and more specifically, our focus is in the

following question: which good lattices in different dimensions have a description

as the intersection of lattices such that a) the lattices in the decomposition are

as simple as possible (ideally cubic lattices) and b) the symmetry properties are

as good as possible? We give some answers and provide concrete decompositions

for most of the best known lattices, that is, for the lattices whose corresponding

lattice quantizers are the best quantizers currently known, assuming high-rate

quantization. Then, we characterize the rate-distortion performance of these

periodic quantizers by deriving an expression for the dimensionless normalized

second moment, which is a generalization of the normalized second moment of

a lattice quantizer. We calculate the corresponding tesselations for some of the
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decompositions we derive and evaluate the rate-distortion performance of the

associated periodic quantizers.

In the context of `2(Z), we study signal representation of oversampled steer-

able transforms in the presence of quantization. We focus our study on transforms

which are steerable under rotation although we also introduce some general the-

ory which is valid for any transformation Lie group. The angular oversampling

in the context of steerable transforms has not been considered by prior research

and we explore techniques to represent efficiently this oversampled data. The

angular oversampling or oversteering is also motivated because it allows us to

establish some “consistency” constraints [39, 60, 84, 111] on the coefficients of

a steerable representation with many orientations (oversteered representation)

which reduces the amount of information lost in the quantization process and

thus increases the accuracy and resolution of the corresponding coefficients. Two

methods are given in order to impose these consistency constraints, one based

on projection on convex sets (POCS) where the convex sets are the the sets of

(steerability and quantization) constraints, and the other one based on linear

programming by calculating regions of uncertainty in the angular domain.

Then, we study the problem of Rotation Invariance in the context of a content-

based image retrieval application. We define a set of energy-based features which

are actually steerable, that is, given the features of a texture oriented at an angle

φ, the features corresponding to the same texture but oriented at an angle φ′, can
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be approximately estimated from the features at angle φ without actually having

to calculate the features for the rotated version. This is a very useful property

because it allows to use a similarity measurement such that the features of two

different images are aligned before they are compared. In a steerable pyramid

with more than one scale or level, all the features across all the levels are steered

at the same time in order to be consistent with what would happen if the original

image was rotated. Notice that this alignment can not be done with a regular

wavelet transform because of the problem of rotation-variance in these critically

sampled transforms.

The main contributions described in this thesis include:

• Efficient Quantization for overcomplete expansions in RN :

1. Joint design of quantization systems and structured overcomplete ex-

pansions in RN which allow to use simple reconstruction algorithms

with low complexity while having good performance in terms of accu-

racy.

2. Complete formulation of quantizers with periodic structure in terms of

lattice theory, arising the concept of lattice intersections and geomet-

rically scaled-similar sublattices. Necessary and sufficient conditions

for achieving a (purely geometrical) periodic structure are given.
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3. The quantized overcomplete expansion induces an equivalent vector

quantizer (EVQ). Necessary conditions in order to have an EV Q

which is regular under linear reconstruction are given.

4. The periodicity is what makes it possible to achieve good accuracy

using simple reconstruction algorithms. We show this by providing

some low complexity reconstruction schemes which can be used thanks

to the periodicity in the structure. Experimental results show the

superiority of our scheme.

5. Implications of our work in (simple encoding) oversampled A/D con-

version of sinusoid signals are also shown.

• Periodic Quantizers based on good Lattice Intersections; Construction and

Analysis:

1. We describe different general methods in order to write a lattice as an

intersection of several simpler lattices such that the symmetry prop-

erties are maximized.

2. We provide decompositions for most of the best known lattices (the

hexagonal lattice A2, the face-centered lattice D3, the body-centered

cubic D∗
3 lattice, the root lattices D4, E

∗
6 , E8, the Coxeter-Todd,

Barnes-Wall and Leech lattices, etc.) in a canonical way as inter-

sections of a small number of simpler, decomposable, lattices.
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3. Assuming that Λ is the intersection of lattices Λ1, . . . ,Λr, we analyze

the tesselation that is obtained as a consequence of simultaneously

quantizing x with respect to each of the Λi. The cells of this tesselation

are the intersections of the Voronoi cells for the Λi and the output of

the quantizer is given by the barycenter of the cell to which x belongs.

We analyze in depth the geometry of the tesselations for the cases

where the intersection lattices are A2, D3, D
∗
3 and D4, which have not

been studied in previous research.

4. A generalization of the expression for the (dimensionless) normalized

mean squared error G is obtained for the case of a quantizer with a

periodic tesselation, obtaining in this way a figure of merit for these

periodic quantizers. Our formulation includes also the case of lattice

vector quantizers as a particular case.

• Quantization in oversampled steerable transforms:

1. Energy compaction in angle (as we increase the number of orientations

in the steerable transform) is obtained by performing simple threshold-

ing on the (angles) coefficients of maximum energy for each location.

This gives rise to a simple method to represent the oversampled data

based on a selection of maximums (in energy) across the different ori-

entations.
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2. Use of projection on convex sets (POCS) to improve accuracy with

two convex constraints: a) angular consistency constraints due to the

steerability property and b) the constraints induced by the quantiza-

tion itself. Experimental results are obtained showing a coding gain

for low rates as we increase the number of orientations (for a certain

range of orientations).

3. A general formulation based on linear programming is obtained to cal-

culate regions of uncertainty in the angular domain. Different prop-

erties and theoretical results are given showing that the uncertainty

about the transform coefficients is reduced as we increase the number

of orientations.

4. A new Rotation-Invariant content-based image retrieval system is pro-

posed based on steerable pyramids. We define energy-based features

that are steerable and allow to use a similarity measurement between

textures such that it performs an alignment of features, which is a

property that can not be achieved with a regular wavelet transform.

We derive the equation describing the steering of the features and show

how to use it not only to measure similarity between textures but also

in order to estimate the relative angles between any two rotated ver-

sions of the same texture. Experimental results testing the rotation
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invariance show a clear advantage of using steerable transforms instead

of regular wavelets.

Finally, current and future work is described in some detail in Chapter 5, with

an emphasis on topics (e.g. power shaping for the Costa problem) that are the

object of current work.
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Chapter 2

Efficient Quantization for Overcomplete

Expansions in RN∗

2.1 Introduction and Motivation

Quantized redundant expansions are useful in different applications such as over-

sampled A/D conversion of band-limited signals [39, 40, 42, 84, 111, 60] and

multiple description quantization [59, 58, 57, 26]. In the first case, the purpose

of using redundant expansions is to attain accurate digital signal representations

under scenarios where the cost of using high rate quantization is much higher than

that of having a high oversampling or redundancy. The most important case is

the analog-to-digital conversion of band-limited signals, where in order to use

high rate quantization to discretize the amplitude it is necessary to use expensive

∗The publications related to this chapter are [11, 10, 8].
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high precision analog circuitry. Instead, accuracy is attained by performing over-

sampling and exploiting this redundancy to reduce the loss of information caused

by low resolution quantization. A more sophisticated strategy is used in sigma-

delta based converters, where the fact that the signal is band-limited is further

used by performing prediction between samples and reducing more effectively the

energy of noise which has more correlation with the input signal, allowing the use

of very simple quantizers (typically single-bit quantizers). Some other systems

have been proposed in the context of pattern recognition for images, where over-

complete transforms are used to emulate the human visual system, which has a

high degree of oversampling in orientation and scale [70, 71]. More specifically,

the visual (striate) cortex is organized in columns containing simple cells, which

act as oriented two dimensional linear filters, so that the cells in each column

have receptive fields (playing the same role as filter impulse responses) which

have roughly the same orientation (although varying in size or scale by octaves)

and the orientations of the cells belonging to adjacent columns differ by about

only ten degrees [70, 71]. The effective number of orientations and scales that are

present is clearly much higher than what is needed to represent the visual signal

comming into the visual system. An increase in resolution (reduction of quanti-

zation of error) due to angular oversampling in the frequency domain has been

observed experimentally for quantized (two-dimensional) steerable transforms,

so that increasing the number of orientations yields a gain in energy compaction
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[9]. Quantized overcomplete expansions also arise in the context of joint source-

channel coding for erasure channels [59, 58, 57, 26].

There are two major factors that determine the accuracy that can be attained

using quantized overcomplete expansions: the reconstruction algorithm and the

quantization scheme. There has been extensive research work aiming at finding

reconstruction algorithms that are optimal or near optimal in terms of asymptotic

(large redundancy values) accuracy. However, the quantization scheme has been

always assumed to be a uniform scalar quantization with the same stepsize for

all expansion coefficients. In this work, we explore efficient quantization designs

for overcomplete expansions.

Reconstruction algorithms have been studied following two main approaches.

The first one is based on modeling the quantization noise as an additive white

noise uncorrelated with the signal that is quantized. These models are sometimes

convenient for analysis and lead to useful results in some scenarios [16, 63]. It

can be shown that if a white noise model is assumed for the scalar quantization

noise of the coefficients and the same stepsize is used to quantize all the coef-

ficients, the optimal reconstruction is given by the usual linear reconstruction

[44], where linear reconstruction consists of first projecting the signal into a set

of vectors (with cardinality larger than the dimension) obtaining a set of coef-

ficients, and then reconstructing by taking a simple weighted average of these
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coefficients. Thus, in practice, linear reconstruction is always used when the as-

sumptions leading to this analysis are valid. In the context of tight frames, an

important class of overcomplete expansions, theoretical analysis shows (under

this quantization scheme and stochastic model) that linear reconstruction [44]

gives a reduction in the power of each noise component (quantization noise of

each projection or coefficient) that is proportional to the redundancy r of the

tight frame. The same decay of the MSE in the signal domain can be shown

theoretically in the cases of tight frames in RN , Weyl-Heisenberg frames in `2(Z)

and in classical oversampled A/D conversion with uniform sampling and linear

reconstruction (tight sinc frames) where MSE = ∆2

12r
[16]. The behavior of the

MSE = O(1/r) is observed experimentally when uniform quantization with the

same stepsize is used and the stepsize is small enough so that the white noise

model approximately applies. One of the reasons for linear reconstruction not to

be optimal in some cases is that the reconstructed signal may not be consistent

with the original signal in the sense that the output obtained from requantizing

the reconstructed signal is different than the output obtained when quantizing

the original signal, implying a larger reconstruction error on average. On the

other hand, it has not been studied whether using a more intelligent quantization

system allowing in general different stepsizes to quantize the coefficients can lead

to improvements in the rate-distortion performance when reconstructing with a
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linear reconstruction algorithm. This is one of the issues that is addressed in this

work.

The second approach is completely based on a deterministic analysis of the

quantization noise. This deterministic approach was introduced by Thao and

Vetterli [84, 111] and later extended in [39, 42, 60]. This deterministic analysis

based on hard bounds of the quantization noise led to two non-linear reconstruc-

tion algorithms for frames in RN , one based on projection on convex sets theory

(POCS) [130, 84, 111, 66, 65] and the other one based on linear programming

(LP) [60]. The main result is that these reconstruction algorithms ensure that

the reconstruction vector falls always inside the same cell as the input vector.

These reconstructions are called consistent and in quantization terms this means

that the equivalent quantizer is regular. It was observed experimentally that for

high enough redundancies r and for uniform quantization of all the frame coeffi-

cients consistent reconstruction algorithms have an asymptotic MSE behavior of

O(1/r2). Moreover, Thao and Vetterli proved (under some mild conditions) that

consistency guarantees this asymptotic behavior for high enough redundancies r

for the case of oversampled A/D conversion of T-periodic bandlimited continuous-

time signals, which can be viewed as a frame expansion in RN with respect to

a certain DFT-like frame. Later, Cvetković [39, 40] proved this fact under some

mild restrictions for overcomplete expansions in RN in general. Cvetković pro-

posed a more efficient reconstruction algorithm called semilinear reconstruction
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algorithm which also attains asymptotically an accuracy of O(1/r2) without sat-

isfying consistency. This algorithm is based on the positions of the threshold

crossings and identifying a good linear system to solve. Moreover, Cvetković and

Daubechies extended this idea to be used in the context of single-bit oversampled

A/D conversion where a deterministic dither is used in order to force threshold

crossing locations with certain properties which allow exponential accuracy in the

bit-rate [41]. Recently, Rangan and Goyal [92] have proposed a recursive algo-

rithm using subtractive dithered quantization which also attains asymptotically

an accuracy of O(1/r2), again, without ensuring consistency.

The crucial observation that motivates our work is that in all the previous

work a very simple quantization scheme has been assumed which requires sophis-

ticated reconstruction algorithms [130, 84, 111, 66, 65, 92, 39, 40] in order to

improve its accuracy with respect to the classic approach [44] (simple quantiza-

tion and linear reconstruction). Instead, we pose the following question: are there

quantization schemes where there is no difference in performance between using

simple reconstruction algorithms (e.g., linear or of similar complexity) and more

sophisticated reconstruction methods? Although all the improved reconstruction

algorithms that have been proposed so far can achieve very good accuracy, the

computational complexity of these methods (although different in each case),

for a given redundancy, is higher than that of linear reconstruction [60, 84, 111].

Since simple reconstructions (e.g., linear or look-up table) are normally preferable
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in practical scenarios, in our work we assume that a simple reconstruction will be

used and the main focus is to explore whether better quantization designs, e.g.,

using different stepsizes, may have the advantage of achieving a performance

which is superior with respect to simple quantization methods, e.g., using the

same stepsize. In other words, our goal is to provide the tools to design the

overcomplete expansions and the corresponding quantization system so that the

overall system behaves like a regular quantizer and achieves the best possible

performance using simple reconstruction algorithms. Designing the quantization

system with a structure that forces consistency, using the usual linear recon-

struction, may result in worse performance, in terms of rate distortion, than a

different system whose structure results in inconsistency. However, we will show

that because of the periodic structure of the quantization system, very simple

reconstruction techniques (e.g., those based on a look-up table) can be designed

which significantly outperform linear reconstruction.

The fundamental idea we use in order to achieve this goal is to design jointly

the overcomplete expansion together with the quantization system by choosing

carefully the stepsizes of the scalar quantizers so that the whole system is equiv-

alent to a vector quantizer in RN with a periodic structure. First, we define

an equivalent vector quantizer given a quantization scheme and a reconstruction

algorithm. Then, based on this equivalence, we introduce the concept of periodic
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quantizers and show how to construct and design periodic quantizers. This peri-

odic structure can be conveniently characterized and parameterized in terms of

lattices and sublattices. The construction we give in order to achieve periodicity

is completely general, while we provide designs for specific cases of redundant

families of vectors. More specifically, in this chapter, almost all the designs are

given for R2 and where the redundant families have a certain constrained struc-

ture. Designs for higher dimensions are provided in Chapter 3. Next, we explain

the advantages that are provided by this periodic structure and show how the

periodic structure in the equivalent vector quantizer is a necessary condition to

achieve consistency under the usual linear reconstruction. This result holds for

any arbitrary frame where the reconstruction is linear. Once a periodic struc-

ture is present, the number of different cells of this vector quantizer becomes

finite and although a sufficient condition can not be expressed formally, it is very

simple to check whether consistency is satisfied or not. For a given family of

vectors and a set of different stepsizes which yield a periodic vector quantizer in

RN , it is possible to reconstruct by using a small look-up table, where the recon-

struction vectors can be chosen to be the centroids of the cells with respect to

a uniform distribution. Moreover, it is also possible to design systems such that

the equivalent vector quantizer has some additional symmetry which allows to

use a very simple improved linear reconstruction. Our system provides excellent

performance while having the same complexity as linear reconstruction, but is
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more suitable to be used in RN for low to moderate values of the dimension N

and for low values of redundancy [10, 11]. Although we present examples and

results for small redundancies, it is clearly shown that the basic theoretical idea

of periodicity can be extended to higher redundancies and that the problem of

finding good quantizers with higher redundancies consists of searching for good

lattices and sublattices with certain properties. Extensions to higher dimensions

have been analyzed by Sloane and Beferull-Lozano recently and can be found

in [102] and Chapter 3. On the other hand, although we believe that multiple

description coding is also a potential application of our framework, we have not

explored this application in this work.

This chapter is organized as follows. In section 2.2 we define the equivalent

vector quantizer and the property of consistency. Section 2.3 describes the con-

struction and design of periodic quantizers in terms of lattices. In section 2.4, it is

first shown that the periodic structure in the equivalent vector quantizer is a nec-

essary condition to achieve consistency under the usual linear reconstruction, and

then, low complexity reconstruction schemes in periodic quantizers are analyzed.

Finally, numerical results for some specific designs in R2 are shown in section 2.5

as well as a simple direct application of our designs in R2 to oversampled A/D

conversion of sinusoid signals.
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2.2 Linear Reconstruction, Equivalent VQ and

Consistency

In this section, we first review the basic concept of a tight frame in RN , and

express a linear reconstruction in terms of an equivalent vector quantizer (EV Q),

which can be parameterized in terms of lattices.

2.2.1 Linear reconstruction in tight frames without

quantization

For the sake of clarity, we review briefly the definitions and main properties of

tight frames.

Definition 1 Let Φ = {ϕi}M
i=1 ⊂ RN where ‖ϕi‖ = 1, ∀ i = 1, . . . ,M . Φ is

called a frame if there exist A > 0 and A ≤ B <∞ such that

A‖x‖2 ≤
M∑

i=1

|〈x,ϕi〉|2 ≤ B‖x‖2, ∀x ∈ RN . (2.1)

A and B are called lower and upper frame bounds. Given a frame Φ, the as-

sociated frame operator F : RN −→ RM is given by an M × N matrix defined

as:

F = (ϕ1ϕ2 . . .ϕM)T

yi = (Fx)i = 〈x,ϕi〉 = ϕT
i x ∀x ∈ RN

(2.2)
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Definition 2 The minimal dual frame of Φ is defined as Φ̃ = {ϕ̃i}M
i=1 where:

ϕ̃i = (F T F )−1ϕi ∀i = 1, . . . ,M. (2.3)

Definition 3 A frame Φ is called a tight frame if A = B, that is, if the lower

and upper bounds are equal.

The following properties are satisfied for a tight frame:

1. The minimal dual frame Φ̃ of a tight frame Φ is given by:

ϕ̃i =
1

r
ϕi ∀i = 1, . . . ,M with r =

M

N
(2.4)

and the redundancy r of the tight frame is equal to the frame bounds, that

is, r = A = B.

2. ∀ x ∈ RN , the expansion with respect to the frame Φ = {ϕi}M
i=1 whose

coefficients have the minimum possible norm (most economical expansion),

is given by:

x =
M∑

i=1

〈x, ϕ̃i〉ϕi =
1

r

M∑

i=1

〈x,ϕi〉ϕi. (2.5)

In this section we restrict the discussion to the case of tight frames that are

composed by a set of r > 1 different orthogonal bases. This is done without

loss of generality for purposes of clarity because the geometric analysis is much
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simpler. Extensions to generic frames are simple and can be obtained by using in

the reconstruction the corresponding dual frames, which will be different in each

case. With this restriction, we can group the vectors {ϕi}M
i=1 that compose the

tight frame as {{ϕj
i}N

i=1}r
j=1, where {ϕj

i}N
i=1 is the j-th basis.

Remark on Notation: In this chapter, we make an extensive use of superscripts

and subscripts. For instance, in a tight frame composed of r orthogonal bases, the

superscript j ∈ Z+ indicates the j-th basis and the subscript i indicates the i-th

vector of the j-th basis. Also, in order to avoid confusion with the superscripts,

to represent a number b raised to the power of e (e being any real number), we

will use (b)e, and we will use be for indexation (e-th element), with e ∈ Z+.

For the sake of simplicity, we restrict most of the equations and expressions

of this section, without any loss of generality, to the case of R2. For N = 2,

the frame contains M = 2r unitary vectors that form r orthogonal bases and

the frame operator can be written as F = [ϕ1
1ϕ

1
2ϕ

2
1ϕ

2
2 . . .ϕ

r
1ϕ

r
2]

T . If we define

each orthogonal matrix F j as F j = [ϕj
1ϕ

j
2]

T , then we call yj = [yj
1, y

j
2]

T the

2-dimensional vector of coefficients associated with the j-th basis, which is given

by yj = F jx. The M-dimensional vector of coefficients y = Fx will be expressed

as y = [y1
1, y

1
2, y

2
1, y

2
2, . . . , y

r
1, y

r
2]

T .
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Figure 2.1: Definition of the EVQ in R2 for a tight frame based on the linear
reconstruction given by the minimal dual frame. A similar definition for the EV Q
can be given for any general linear reconstruction algorithm.

2.2.2 Equivalent Vector Quantizer (EV Q) for linear

reconstruction

Assume that scalar quantization is applied to the frame coefficients. Let SQj
i

be a uniform scalar quantizer with stepsize ∆j
i and decision points {m∆j

i}m∈Z.

This is a particular choice without any loss of generality, that is, what follows is

also valid for scalar quantizers with decision points {(m+ 1
2
)∆j

i}m∈Z where 0 is a

reconstruction point.

Then, we define SQ1
1×SQ1

2× . . .×SQr
1× SQr

2 as an M -dimensional product

scalar quantizer (PSQ) applied to the M -dimensional vector of coefficients y,
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(a)

x̂2 

x1 

x 

 

x2 

x1 
x’ 

^

^

^

^
^

CONSISTENT
RECONSTRUCTION 

INCONSISTENT
RECONSTRUCTION 

(b)

Figure 2.2: a) Example of the convex polytopes CEV Q in R2, b) (Zoom) Example
of outputs for the quantizers Q1, Q2 and the EVQ when linear reconstruction is
used. The partial reconstructions x̂j, j = 1, 2 are represented by ′∗′ and the final
reconstruction x̂ is represented by ′◦′. The final reconstructions are obtained
by taking the halfway point between x̂1 and x̂2, that is, x̂ = 1

2
(x̂1 + x̂2). Two

reconstructions are shown, each reconstruction corresponding to the case where
the original vector x is in each of the two EVQ cells indicated with the bold line.
x̂ is a consistent reconstruction and x̂′ is an inconsistent reconstruction.

i.e., each of the components of the vector y are quantized by a corresponding

scalar quantizer (see Fig. 2.1).

Given a tight frame Φ and a PSQ, we define the following quantizer:

Definition 4 A quantizer Qj, 1 ≤ j ≤ r consists of:

1. A set Cj of rectangular quantization cells induced by the scalar uniform

quantizers {SQj
1, SQ

j
2} which are applied to the frame coefficients associated

with the j-th basis.
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2. A mapping R2 −→ R2 from the set of cells Cj to a set of reconstructions

(outputs) Oj such that ∀x satisfying mi∆
j
i ≤ SQj

i (〈x,ϕj
i ) ≤ (mi + 1)∆j

i ,

i = 1, 2 the reconstruction vector is given by

x̂j = Qj(x) =
∑2

i=1 SQ
j
i (〈x,ϕj

i 〉)ϕj
i , SQj

i (β) =
(⌊

β

∆j
i

⌋
+ 1

2

)
∆j

i

=⇒ x̂j =
∑2

i=1

(
mi + 1

2

)
∆j

iϕ
j
i .

(2.6)

The stepsize associated with the scalar quantizer SQj
i is denoted by ∆j

i . The

vertices of the cells Cj form what is called a real 2-dimensional lattice.

Definition 5 A N-dimensional lattice Λ is a discrete subgroup of RN which is

defined as the set of points obtained by taking linear combinations of N linearly

independent vectors with coefficients being integers:

Λ = {x : x = u1a1 + u2a2 + . . .+ uNaN , ui ∈ Z, i = 1, . . . , N}. (2.7)

The set of vectors {ai}N
i=1 are the generator (basis) vectors of the lattice and

the matrix MΛ = (a1|a2| . . . |aN)T is called the generator matrix of the lattice.

Thus, the vertices of the cells Cj form a lattice Λj having generator matrix

MΛj = (∆j
1ϕ

j
1|∆j

2ϕ
j
2)

T . Because of the orthogonality, the basis vectors of the

lattice point in the same directions as the unitary vectors that compose F j, but

in general, it is clear that this is not the case when the tight frame is not composed
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by a set of orthogonal bases, as we will see in section 2.3. There are an infinite

number of possible (minimal) bases that can be used for this lattice. We will

always use, as a basis for the lattice Λj, the j-th orthogonal basis {ϕj
1,ϕ

j
2}. In

this way, the outputs of quantizer Qj can be expressed directly in terms of the

generator matrix MΛj . Notice that the cells associated with the quantizer Qj

are convex polytopes whose vertices are all in the lattice Λj.

Given a set of quantizers Qj, j = 1, . . . , r, defined as above, we now introduce

the concept of Equivalent Vector Quantizer (EVQ) as follows:

Definition 6 The EV Q consists of:

1. A set of quantization cells formed by the intersection of the rectangular cells

{Cj}r
j=1 of the quantizers {Qj}r

j=1.

2. A mapping R2 −→ R2 from the set of cells to a set of reconstructions given

by:

x̂ =
1

r

r∑

j=1

x̂j where x̂j = Qj(x). (2.8)

Thus, the linear reconstruction, as represented in Fig. 2.1 and shown in Fig. 2.2(b),

consists of taking the geometrical average point among the different reconstruc-

tions x̂j, j = 1, . . . , r.

The PSQ in RM leads to an EVQ in R2 and the output of the EVQ can be

written as a linear combination of the outputs from each 2D quantizer Qj where
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it can be seen that the set of outputs (reconstructions) of quantizer Qj forms a

coset of the lattice Λj. Fig. 2.2(a) illustrates the partition generated by the EV Q

for an example where r = 2, and the tight frame and associated stepsizes are:

F =




1 0

0 1

cos(π
6
) sin(π

6
)

− sin(π
6
) cos(π

6
)




∆1
2 =

6

5
∆1

1 ∆2
1 =

13

10
∆1

1 ∆2
2 =

9

8
∆1

1 (2.9)

Fig. 2.2(b) illustrates how the final reconstruction vector x̂ is obtained. Notice

that since the cells Cj generated by the quantizer Qj are convex polytopes, the

cells CEV Q = CΛ1∩. . .∩CΛr
corresponding to the EV Q are intersections of convex

polytopes, and therefore are also convex polytopes in R2. It is important to notice

that in general the EVQ is not necessarily a Voronoi or nearest neighbour vector

quantizer, and although its cells are convex polytopes, they are not in general

(minimum distance) Voronoi cells. For a cell to be a Voronoi cell, it would be

required that any point contained in that cell be closer to the centroid of that

cell than to the centroid of any other cell. This is not satisfied in general because

these cells are obtained as the intersection of cells of the (nearest neighbour)

quantizers {Qj}r
j=1 used in each of the basis, rather than as the nearest neighbor

regions for each reconstruction vector. In other words, the intersection of nearest
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neighbour quantizers does not result in general in a nearest neighbour quantizer.

Therefore, we will refer to EV Q cells instead of Voronoi cells. In general, for a

given redundancy r, x̂ is obtained by averaging over the r linear reconstructions

x̂j j = 1, . . . , r given by the corresponding quantizers Qj j = 1, . . . , r.

Remark: The concept of EV Q can be actually defined for any reconstruction

algorithm, not necessarily only for the linear reconstruction algorithm using the

minimal dual frame as described above. However, for clarity, we have restricted

in this section the definition and concepts to this particular case. For any other

reconstruction algorithm, the definitions 4 and 6 should be modified so that the

set of reconstruction vectors are the ones given by the particular reconstruction

algorithm that is used.

Another concept that will be used in some of the next sections is that of

fundamental polytope. The fundamental polytope Cj
o associated with the lattice

Λj is defined by:

Cj
o = {x : x = α1∆

j
1ϕ

j
1 + α2∆

j
2ϕ

j
2, 0 ≤ αi < 1, i = 1, 2} (2.10)

which is the parallelopiped formed by the basis vectors of the lattice Λj. The

area of this fundamental polytope is equal to |det(MΛj)|.
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2.2.3 Property of Consistency for a generic reconstruction

algorithm

Although the concept of consistency was introduced in [84, 111], for the sake of

clarity and because it is a central concept for this work, we review it here. Given

a tight frame Φ, constructed by using r > 1 orthogonal bases, it is desirable to

design an EV Q, such that if x is the original vector and x̂ is the reconstructed

vector, both x and x̂ fall in the same EVQ cell. The reconstruction vectors x̂

satisfying this property are called consistent reconstructions of x.

Given a frame operator F and a generic PSQ, the concepts of consistency

(for a generic reconstruction algorithm) and linear consistency (for the case of

linear reconstruction) for an EV Q cell CEV Q
i , are defined as follows:

Definition 7 Consistent cell: Let CEV Q
i be a cell in an EVQ, and x̂ its repro-

duction vector. CEV Q
i is said to be consistent if x̂ ∈ CEV Q

i .

For the particular case of using a linear reconstruction, the definition of linearly

consistent cell is:

Definition 8 Linearly Consistent cell : Let CEV Q
i be a cell of an EV Q. CEV Q

i is

said to be linearly consistent if it is consistent under linear reconstruction, where

the linear reproduction vector is given by x̂ = 1
r

∑r
j=1 x̂j.
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Remark: As before, the definition of linear consistency can be extended to any

general linear reconstruction algorithm, not just the linear reconstruction given

by the minimal dual frame.

An EV Q is said to be consistent if and only if all its cells CEV Q are consis-

tent. Similarly, a general reconstruction algorithm that gives rise to a consistent

quantizer is called a consistent reconstruction algorithm. In particular, a quan-

tizer which satisfies consistency under linear reconstruction is said to be linearly

consistent.

Given an EVQ, the optimal reconstruction for any cell in terms of average

MSE is obviously inside that cell, that is, the optimal reconstruction is always a

consistent reconstruction2. Since an inconsistent reconstruction x̂ is outside the

cell corresponding to the original signal x, as opposed to a consistent reconstruc-

tion, consistent reconstructions will yield smaller squared distortion (MSE) than

inconsistent reconstructions on average for a given EV Q. In our work, the goal is

to find a set of EV Q’s for which it is possible to have consistent reconstructions

with simple reconstruction algorithms.

Fig. 2.2(b) shows examples of both consistent and inconsistent cells assuming

linear reconstruction. One of our goals is to design quantization techniques such

that all EV Q cells are linearly consistent. Fig. 2.3(a) and Fig. 2.3(b) provide a

simple and intuitive example that illustrates how linearly consistent EV Q cells

2This statement holds because the EV Q cells are convex.
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(a) (b)

Figure 2.3: Example for r = 2 showing how the consistency problem can be solved
by choosing carefully a certain frame and a set of different stepsizes: a) using the
same stepsizes gives rise to inconsistent cells, one of them is indicated with a
circle; b) choosing different stepsizes in each basis yields a consistent EVQ.

can be achieved by choosing scalar quantizers with different stepsizes for each of

the r = 2 bases. It can be seen in Fig. 2.3(b) how the intersection between cells

of Q1 and cells of Q2 is the same across all the partition of the EVQ. As will

be explained later, the crucial idea we use in order to achieve consistency with

low complexity reconstruction algorithms is to enforce a periodic structure on

the partition defined by the EV Q, as in the example of Fig. 2.3. Intuitively, the

stepsizes selected will depend on the angle between each of the bases. Fig. 2.4

shows a second example where consistency is achieved by creating a periodic

structure. Therefore, since it seems intuitive that periodicity in the structure

may be useful to remove inconsistency, we analyze next how to construct periodic

EV Q’s.
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(a) (b)

Figure 2.4: a)Example of a linearly consistent quantizer EVQ, b)(Zoom) 4 cells
of Q1. The reconstructions x̂j, j = 1, 2 are represented by ′∗′ and the final
reconstruction x̂ is represented by ′◦′.

2.3 Construction and Design of Quantizers with

Periodic Structure

We call the type of quantizers shown in Fig. 2.3 “periodic quantizers” because

the partition they generate has a periodic structure. We derive in detail how to

design such quantizers in this section. The construction that we give in order

to achieve periodicity is completely general. However, we provide designs only

for redundant families (frames) of vectors with a certain constrained structure.

More specifically, we give designs mostly for the case of having r orthogonal bases

in R2. Some designs extensions for R2 are given in section 2.3.5 where several
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examples are given, and extensions to higher dimensions can be found in section

2.3.4 and Chapter 3.

2.3.1 Definition and Construction of periodic EV Q’s for

R2

In order to facilitate the understanding, we first provide a detailed derivation of

how to impose a periodic structure in EVQ’s in R2 for the case of redundancy

r = 2. Then, we extend the idea to higher redundancies also in R2, and, finally,

we explain how to obtain periodic structures in higher dimensions, showing that

the construction is completely general.

In designing an EVQ with a periodic structure, we will use the concept of

sublattice.

Definition 9 ([34]) A sublattice Λs ∈ Λ of a given lattice Λ is a subset of the

elements of Λ that is itself a lattice. A sublattice Λs is completely specified by an

invertible integer matrix BΛs that maps a basis of Λ into a basis of Λs, that is,

MΛs = BΛsMΛ, where MΛs and MΛ are the generator matrices of Λs and Λ

respectively.

Given a real full rank lattice3 Λ with generator matrix MΛ, we consider only

full rank sublattices Λs, that is, rank(MΛ) = rank(MΛs). Another important

3Λ is said to be a full rank lattice if its generator matrix MΛ is full rank.
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concept is that of the index of a sublattice Λs contained in a lattice Λ which is

given by:

|Λ/Λs| =
det(MΛs)

det(MΛ)
=
V ol(CΛs

o )

V ol(CΛ
o )

= |det(BΛs)| (2.11)

The index of a sublattice is the ratio of the volumes of the fundamental polytope

associated with the sublattice Λs and the one associated with Λ. This is also

equal to the number of lattice points of Λ contained in each cell defined by Λs.

Notice that in the particular case of having an integer matrix BΛs such that

|det(BΛs)| = 1, Λ and Λs are the same lattice. This particular type of integer

matrices satisfying this property are called unimodular matrices and by taking

different unimodular matrices one can obtain different generator matrices for the

same lattice.

We introduce the concept of geometrically scaled-similar sublattices from

which we build periodic tesselations.

Definition 10 Given a real lattice Λ in R2 with generator matrix MΛ, a lattice

Λ′ is geometrically scaled-similar to Λ iff:

MΛ′ =




c1 0

0 c2


UMΛR, (2.12)

where R is a 2 × 2 orthogonal matrix, that is, a rotation and/or a reflection in

R2, U is a 2× 2 unimodular integer matrix, and c1, c2 ∈ R+.
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If Λ′ is geometrically scaled-similar to Λ and is also a sublattice of Λ, then

we denote it by SΛ. Note that this can only be true for specific values of c1,

c2 and R. Thus, a geometrically scaled-similar sublattice SΛ of a lattice Λ is

(a) (b)

Figure 2.5: Example 1: a) Sublattice structure b) EVQ cells CEV Q.

obtained by simply rotating and/or reflecting the lattice Λ and then scaling each

of the new axes. The matrix U allows us to choose different basis vectors for

the sublattice SΛ. If det(R) = +1, then R is a pure rotation, and the scaling

parameters c1 and c2 allow to control the magnitudes in each of the 2 vectors that

define its basis. If det(R) = −1, then R contains or is a reflection. The possible

orientations and values for c1 and c2 that determine a geometrically scaled-similar

sublattice will be given in section 2.3.2. Notice that in the particular case of

having c1 = c2, SΛ would be a geometrically similar (or equivalent) sublattice

of Λ, as defined by Conway et al. [30, 34]. We restrict R to be a pure rotation
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so that we can associate each rotation with a basis of a frame, as we explain

next. Fig. 2.5(a) shows an example for a redundancy r = 2 of a geometrically

scaled-similar sublattice of a rectangular lattice.

Without loss of generality, in the following we will construct geometrically

scaled-similar sublattices of a canonical lattice Λ1, where Λ1 has generator matrix:

MΛ1 =




∆1
1 0

0 ∆1
2


 (2.13)

that is, the generator vectors of Λ1 are scaled versions of the canonical basis

vectors ϕ1
1 = [1, 0]T , ϕ1

2 = [0, 1]T (F 1 = I2x2). We define the quantizer Q1 as the

quantizer with rectangular cells CΛ1

whose vertices are given by the lattice Λ1.

Notational Remark: In order to distinguish between the cells associated with

a lattice Λj or a quantizer Qj and the cells associated with a geometrically scaled-

similar sublattice SΛj ⊂ Λj, we will use the following notation: a) CΛj
will denote

the set of cells associated with Λj and Qj, where we use now CΛj
instead of Cj

in order to emphasize that these cells are associated with the lattice Λj; b) CSΛj

will denote the set of cells associated with SΛj. The subscript will indicate in

both cases a particular cell.

Definition 11 Periodicity Property: An EVQ is said to be periodic if the parti-

tion of the space given by its quantizing cells satisfies the following two properties:
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1. There exists a minimal periodic unit CEV Q
o which is the union of a finite

set of cells {P1, . . . ,Pm}.

2. There exists a lattice Λ which determines this periodicity such that all the

cells of the EV Q are given by {P1, . . . ,Pm} + Λ, that is, copies of the

minimal unit CEV Q
o translated by the points of Λ.

Fig. 2.5(b) shows the unit cell CEV Q
o with bold lines for a particular EV Q with

redundancy r = 2.

The periodicity structure is achieved by finding lattices whose intersection is

not empty, which involves the concept of sublattice.

Fact 1 If Λs is a sublattice of Λ1, the partition defined by the intersection of the

cells CΛ1

with the cells determined by Λs has a periodic structure (tesselation)

with the minimal periodic unit given by CΛ1 ∩CΛs
o , where CΛs

o is the fundamental

polytope associated with the sublattice Λs and the whole tesselation is obtained by

translating the cells CΛ1 ∩ CΛs
o with the points of Λs.

Proof: See Appendix A.1.

This fact can be observed in Fig. 2.5(a) where in this case, the sublattice

is a geometrically scaled-similar sublattice. In this work, we use Fact 1 for the

particular case where the sublattices are geometrically-scaled similar.
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Definition 12 Given a set of lattices Λj, j = 1, . . . , r, the coincidence site lattice

(CSL) ΛCSL is the intersection lattice:

ΛCSL = Λ1 ∩ Λ2 ∩ . . . ∩ Λr, (2.14)

which is the finest common sublattice of all the lattices Λj, j = 1, . . . , r.

In order to achieve periodicity, our goal is to construct a set of lattices Λ1, Λ2,...,

Λr whose intersection is not empty. For this, it is sufficient to find a set of

geometrically scaled-similar sublattices SΛ1, SΛ2,..., SΛr of the first lattice Λ1.

For notational convenience, we take SΛ1 = Λ1 and we will always take U = I in

(2.12) so that the basis vectors of the j-th geometrically scaled-similar sublattice

are orthogonal (because of the rotation matrix) and can be associated with the

j-th orthogonal basis of a tight frame. Each rectangular cell CSΛj

i defined by

each sublattice SΛj has sides with lengths cj1∆
1
1 and cj2∆

1
2. Since we have that

cj1, c
j
2 ≥ 1 ∀j, V ol(SΛj) = cj1c

j
2V ol(Λ

1) ≥ V ol(Λ1). Moreover, since the index of

a sublattice is always an integer, we have that cj
1 × cj2 ∈ Z ∀j.

Suppose we design jointly a lattice Λ1 = SΛ1 with generator matrix MΛ1 =

diag[∆1
1,∆

1
2] (choosing certain values for ∆1

1,∆
1
2), and r−1 different geometrically

scaled-similar sublattices of Λ1 denoted by SΛ2, SΛ3,..., SΛr. Given a sublattice

SΛj, we define a finer lattice Λj ⊃ SΛj with generator matrix given by:
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MΛj =




1

dj
1

0

0 1

dj
2


MSΛj , MSΛj = BSΛj




∆1
1 0

0 ∆1
2


 , BSΛj =




k
j
11 k

j
12

−k
j
21 k

j
22




(2.15)

where dj
1, d

j
2, k

j
11, k

j
12, k

j
21, k

j
22 ∈ Z+, that is, are any positive integers.

As we show in Lemma 1 below, if we associate r quantizers {Qj}r
j=1 respec-

tively with the lattices {Λj}r
j=1, this construction given above is sufficient in order

to ensure that the intersection of all the lattices Λj, j = 1, . . . , r is not empty,

and therefore, by group theory, the intersection is a lattice. Notice that if we

consider only one lattice Λj together with the canonical lattice Λ1, both con-

structed as described in (2.15), and we define corresponding quantizers Q1 and

Qj, respectively associated with them, it follows from Fact 1 and because {dj
1, d

j
2}

are positive integers, that the cells given by CΛ1 ∩CΛj
have a periodic structure,

which is still determined by CSΛj

o (see Fig. 2.5(b)). Therefore, for r = 2, it is

clear that periodicity holds.

Next, we show that the construction of Λ1, . . . ,Λr given above ensures that

these lattices have a non-empty intersection, which actually implies a periodic

structure4 in the resulting EVQ.

4Notice that a periodic tesselation may be obtained also using other methods which are
not based on intersecting lattices, that is, forcing the intersection of the lattices Λ1, . . . , Λr is
just one (purely geometrical) way to obtain a periodic tesselation, but one could also build a
periodic tesselation in other ways.
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Lemma 1 Given a set of lattices {Λj}j=r
j=2, such that Λj ⊃ SΛj and SΛj is a

sublattice of Λ1 j = 2, . . . , r, then the coincidence site lattice contains as a sub-

lattice, a lattice Λo that is an integer scaling of Λ1, that is, MΛo = DMΛ1 , where

D ∈ Z.

Proof: See Appendix A.2. The importance of calculating the coincidence site

lattice ΛCSL comes from the fact that its fundamental cell CCSL
o is the unit cell

that is repeated in the periodic structure of the resulting EVQ, as shown in the

following Lemma.

Lemma 2 Given r quantizers Qj, j = 1, . . . , r, associated with the lattices Λj,

j = 1, . . . , r, the partition of EVQ cells has a periodic structure, with the unit

cell that is repeated periodically being CCSL
o , the fundamental polytope of the co-

incidence site lattice ΛCSL.

Proof: See Appendix A.3.

Notice that any other lattice that is also a sublattice (although coarser than

the CSL) of all the lattices Λj, j = 1, . . . , r determines also a unit cell that is

repeated periodically. This unit cell, however, will be larger than CCSL
o . For

instance, the fundamental polytope of the rectangular lattice Λo described in

Lemma 1, will be also repeated periodically but V ol(Λo) ≥ V ol(ΛCSL).
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Next, we show how to calculate in a simple way the generator matrix of the

coincidence site lattice ΛCSL for any dimension N . For this, it is necessary to

first review the following concept for N -dimensional lattices.

Definition 13 Given r N-dimensional lattices Λj, j = 1, . . . , r in RN satisfying

the property that ∃ an N-dimensional lattice ΛF for which Λj ⊂ ΛF , j = 1, . . . , r,

we define the (N-dimensional) sum lattice ΛΣ = Λ1 + Λ2 + . . .Λr as follows [83]:

ΛΣ = {y ∈ RN : y = xA,x ∈ ZrN} where A =




MΛ1

MΛ2

...

MΛr




. (2.16)

Remark: The lattice ΛΣ is the lattice generated by all the basis vectors of all the

lattices Λj, j = 1, . . . , r in RN (not simply the union of the lattice points). The

matrix A defined above can be reduced to obtain the actual (N ×N) generator

matrix MΛΣ using the so-called Hermite normal form (HNF) reduction algorithm

[83].

Definition 14 The dual lattice Λ∗ of a lattice Λ in RN is defined as follows [34]:

Λ∗ = {v ∈ RN : 〈v,w〉 ∈ Z ∀w ∈ Λ}. (2.17)
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The generator matrix of Λ∗ is given by MΛ∗ = ((MΛ)−1)T , and we have also

that (Λ∗)∗ = Λ [34].

It is important to note that the sum of 2 lattices Λ1 and Λ2 is not necessarily

a lattice; for instance taking Λ1 = Z and Λ2 =
√

2Z, then their sum is not a

lattice because the sum is not a discrete subgroup of R. It can be shown [47, 78]

that if Λ1 and Λ2 are contained in a certain full rank lattice ΛF , then Λ1 +Λ2 is a

full rank lattice. There exists a fast algorithm to find the basis of the sum of two

lattices which makes use of the concept of greatest common left divisor (gcld) of

two matrices (this can be found in Appendix A.8).

Based on the previous definitions, the following important theorem from lat-

tice theory allows us to calculate the intersection lattice ΛCSL of a set of lattices

Λ1, . . . ,Λr [74, 87]:

Theorem 1 Given r lattices Λj, j = 1, . . . , r, the following holds:

(Λ1)∗ + . . .+(Λr)∗ = (Λ1∩ . . .∩Λr)∗ ⇐⇒
(
(Λ1)∗ + . . .+ (Λr)∗

)∗
= Λ1∩ . . .∩Λr .

(2.18)

Notice that using Lemma 1 the construction of the lattices Λ1, . . . ,Λr we have

presented here ensures that ΛCSL always exist and is a full rank lattice, implying a

periodic structure in the EV Q. The necessary and sufficient condition for Λ1∩Λ2

to exist and be a full rank lattice is that the matrix (MΛ1)−1MΛ2 be a matrix of
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rational numbers. This condition is implicitly used in order to prove Lemma 1. In

the same way, our construction also ensures that (Λ1)∗ + (Λ2)∗ always exists and

is a full rank lattice. The lattice Λ1 ∩Λ2 is the finest lattice which is a sublattice

of Λ1 and Λ2, while the sum Λ1 + Λ2 is the coarsest lattice which contains both

Λ1 and Λ2 as sublattices.

2.3.2 Design and Parameterization for R2

Let Λ1 be a rectangular lattice in R2 with generator matrix MΛ1 = diag[∆1
1,∆

1
2],

which defines a quantizer Q1. In R2, it is easy to parameterize all the geometri-

cally scaled-similar sublattices of Λ1 in terms of the possible scaling factors and

rotation matrices as in (2.12). This parameterization can be used in order to

build a periodic EVQ in R2 for any redundancy r.

Fact 2 All geometrically scaled-similar sublattices SΛ of Λ1 with MΛ1 = diag[∆1
1,

∆1
2], have generator matrices that can be characterized geometrically in the fol-

lowing way:

MSΛ =




c1∆
1
1 0

0 c2β∆1
1







cos(θ) sin(θ)

−sin(θ) cos(θ)




where β =
∆1

2

∆1
1

=
√

k11k21

k12k22
, tan(θ) =

√
k12k21

k11k22
= k12

k11
β, c1 = k11

cos(θ)
, c2 = k22

cos(θ)

(2.19)
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and k11, k12, k21, k22 are any possitive integers and 0 < θ < π
2
.

Proof: See Appendix A.4.

The angle θ is restricted to the interval ]0, π
2
[ to avoid duplicity. That is, given

a valid angle θ ∈]0, π
2
[, the angles θ + iπ

2
, i = 1, 2, 3 generate the same sublattice

SΛ because the basis vectors will be inverted versions of the ones corresponding

to θ ∈]0, π
2
[.

The generator matrix of lattice Λj, as given in (2.15), and stepsizes {∆j
1,∆

j
2}

associated with the scalar quantizers {SQj
1, SQ

j
2} can be parameterized by:

MΛj =




kj
11

dj
1

kj
12

dj
1

β

−k2
21

dj
2

kj
22

dj
2

β


∆1

1,
∆j

1 =
∆1

1

dj
1

√
kj
11

kj
22

(kj
11k

j
22 + kj

12k
j
21)

∆j
2 =

∆1
1

dj
2

√
kj
21

kj
12

(kj
11k

j
22 + kj

12k
j
21)

(2.20)

A few comments are in order:

1. Only those angles θ such that tan(θ) =
√
m1/m2, m1, m2 ∈ Z+, lead to

geometrically scaled-similar sublattices.

2. For a given fixed angle θ there is more than one solution for β, c1 and c2.

3. The product c1c2 = |Λ/SΛ| ∈ Z+, as it should be, because:

c1c2 = k11k22

(
1

cos(θ)

)
= k11k22(1 + (tan(θ))2) = k11k22 + k12k21 ∈ Z+

(2.21)
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4. If we consider the particular case of having c1 = c2 = c and β = 1, that

is, geometrically similar sublattices of the cubic real lattice Z2
∆1

1

, then, the

possible solutions are5:

tan(θ) =
b

a
, c =

√
a2 + b2, cos(θ) =

a√
a2 + b2

, sin(θ) =
b√

a2 + b2

(2.22)

where a, b ∈ Z+, which agrees with [30].

Although periodicity in the structure holds for any two positive integers dj
1 and

dj
2, in practice, each pair (dj

1, d
j
2) is constrained to some values to provide good

quantization performance. Therefore, it is desirable not to have a cell of a quan-

tizer Qj1 completely contained within a cell of another quantizer Qj2. Ideally,

adding succesive quantizers Qj will lead to reductions in the size of the EV Q

cells (and therefore in distortion). Appendix A.5 describes in detail a simple

geometric criterion that can be used to address this issue. There is not a unique

way in the order in which one can choose the different parameters. One possible

way is by fixing the angle θ first, that is, choosing a value for
√

(k12k21)/(k11k22),

then searching within all the 4-tuples of integers resulting in that value, and for

each of these 4-tuples, we obtain certain values for the stepsizes using (2.20).

5Notice that we are restricting the angle θ to be 0 < θ < π
2 .
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2.3.3 Examples of Periodic EV Q’s in R2

We present in this section several design examples for the two-dimensional case.

Example 1 Let us choose an angle θ such that tan(θ) =
√

2× 3. A possible

choice for the constant integers is k2
11 = k2

22 = 1, k2
12 = 2 and k2

21 = 3. If we

choose d2
1 = 2 and d2

2 = 3, the resulting quantizer Q2 is given by:

β =

√
3

2
, ∆2

1 =

√
3

2
∆1

1, ∆2
1 =

1

cos(θ)
∆1

1, ∆2
2 =

1

cos(θ)

√
3

2
∆1

1 (2.23)

The corresponding EV Q cells are shown in Fig. 2.5(b).

(a) (b)

Figure 2.6: a) Example for r = 3: Structure of the EVQ and unit cell of the
structure; b) Example for r = 4: Structure of the EVQ and unit cell. Notice
that in b) due to the symmetry that exists within CCSL

o , the effective number of
different EV Q cells is basically 1/8 of the total number of cells within this unit
cell.
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Example 2 A good example for r = 3 is obtained by using the following tight

frame and stepsizes:

F =




1 0

0 1

cos(π
6
) sin(π

6
)

− sin(π
6
) cos(π

6
)

cos(π
3
) sin(π

3
)

− sin(π
3
) cos(π

3
)




β = 1√
3
, ∆1

2 = β∆1
1 = 1√

3
∆1

1

∆2
1 = 1

2

(
1

cos( π
6

)
∆1

1, ∆2
2 = 1

2

(
3

cos( π
6

)(
1√
3

)
∆1

1

∆3
1 = 1

2

(
1

cos( π
3

)
∆1

1, ∆3
2 = 1

2

(
1

cos( π
3

)(
1√
3

)
∆1

1

(2.24)

Notice that in this example, d2
1 = d2

2 = d3
1 = d3

2 = 2. Fig. 2.6(a) shows the unit

cell that is repeated periodically and the resulting EV Q cells. In this example, we

have that:

MΛCSL =




1 1

−1 1


MΛ1 =




1 1

−1 1







1 0

0 1√
3


∆1

1 =




1 1√
3

−1 1√
3


∆1

1

MΛo =




2 0

0 2


MΛ1 = 2




1 0

0 1√
3


∆1

1

(2.25)
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Example 3 An example for r = 4 can be obtained by using the following tight

frame and stepsizes:

F =




1 0

0 1

1√
2

1√
2

−1√
2

1√
2

1√
5

2√
5

−2√
5

1√
5

2√
5

1√
5

−1√
5

2√
5




β = 1, ∆1
2 = β∆1

1 = ∆1
1

∆2
1 =

√
2∆1

1, ∆2
2 =

√
2∆1

1

∆3
1 =

√
5

2
∆1

1, ∆3
2 =

√
5

2
∆1

1

∆4
1 =

√
5

2
∆1

1, ∆4
2 =

√
5

2
∆1

1

∆5
1 =

√
5

2
∆1

1, ∆5
2 =

√
5

2
∆1

1

∆6
1 =

√
5

2
∆1

1, ∆6
2 =

√
5

2
∆1

1

(2.26)

Fig. 2.6(b) shows the unit cell that is repeated periodically and the resulting EV Q

cells. In this example, we have that:

MΛCSL =



−5 5

5 5


MΛ1 =



−5 5

5 5


∆1

1

MΛo =




10 0

0 10


MΛ1 =




10 0

0 10


∆1

1

(2.27)
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Notice in these two examples how we have chosen the stepsizes of the different

quantizers {Qj}r
j=1 trying to satisfy as much as possible the constraints mentioned

in section 2.3.2 (refinement between different quantizers).

2.3.4 Design of Periodic EV Q’s in higher dimensions

We now analyze the extension to higher dimensions for the case where MΛ1 =

I∆1
1, that is, if the dimension is N , then ∆1

1 = ∆1
2 = . . . = ∆1

N . Since Λ1 is a

cubic lattice, a geometrically scaled similar sublattice SΛ has to be also cubic

and thus its generator matrix has to be MSΛ = BSΛMΛ1 = BSΛ∆1
1 where the

integer matrix BSΛ satisfies the orthogonality property:

BT
SΛBSΛ =




b1 0 · · · 0

0 b2 · · · 0

0 · · · . . .
...

0 0 · · · bN




, b1, b2, . . . , bN ∈ Z+ (2.28)
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If SΛj is the j-th sublattice, we construct the j-th lattice Λj as we have done be-

fore for N = 2, that is, dividing by integers {dj
i}N

i=1 and the associated orthogonal

matrix F j and stepsizes {∆j
i}N

i=1 will be given by:

F j =




1√
bj
1

0 · · · 0

0 1√
bj
2

· · · 0

0 · · · . . .
...

0 0 · · · 1√
bj
N




BSΛj , ∆j
i =

√
bji

dj
i

∆1
1, dj

i ∈ Z+ (2.29)

and all the results regarding periodicity in the structure of the final EVQ and

the coincidence site lattice ΛCSL apply also here.

Since the matrix MSΛ is proportional to BSΛ by ∆1
1, let us focus on the problem

of finding integer matrices BSΛ satisfying the properties mentioned above, thus,

looking at geometrically similar sublattices of ZN . Clearly, we can construct

matrices BSΛ in the following way:

BSΛ =




a1 0 · · · 0

0 a2 · · · 0

0 · · · . . .
...

0 0 · · · aN




HSΛ, a1, . . . , aN ∈ Z, HT
SΛHSΛ = mI (2.30)
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where m ∈ Z+. The problem of finding matrices HSΛ satisfying the above

property has been studied extensively [54, 121], where the algebraic theory of

orthogonal designs allows to find general constructions of orthogonal matrices

with indeterminate entries.

Notice that the matrices HSΛ actually generate geometrically similar or equiv-

alent sublattices with index K = mN/2, m ∈ Z+. Explicit constructions in higher

dimensions have been provided by Sloane and Beferull-Lozano and can be found

in [102] and Chapter 3. More specifically, constructions are given for dimensions

N = 3, 6, 12, 24, 2k, k ≥ 2. For illustration purposes, we present here a simple

example for N = 4. Details about the tesselation of the space that is generated

are also given in [102] and Chapter 3.

Example 4

MΛ1 =




2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2




,MΛ2 =




+ + + +

+ − + −

+ − − +

+ + − −




,MΛ3 =




− + + +

− − + −

− − − +

− + − −




(2.31)
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where + = +1 and − = −1 and the lattices are given at a fixed scale. These lattices

can be scaled as usual multiplying them by ∆1
1. The intersection of these three lattices,

that is, the coincidence site lattice can be easily calculated and is given by:

MΛCSL =




4 0 0 0

2 2 0 0

2 0 2 0

2 0 0 2




, (2.32)

which is a version of the well-known lattice D4 (best known lattice quantizer in four

dimensions) on the scale at which its minimal squared norm is 8.

2.3.5 Design of Periodic EV Q’s for other redundant

families

It is also possible to construct periodic quantizers using families (frames) of vec-

tors with integer redundancy r but which do not consist of a set of orthogonal

bases. In this section, we show examples which are based on hexagonal lattices A2

in R2, and sublattices which are geometrically similar (c1 = c2 = c) to hexagonal

lattices.
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Conway and Sloane [30] have parameterized all the possible sublattices which

are geometrically similar to the hexagonal lattice Λ1 = A2, whose generator

matrix is given by:

MΛ1 =




1 0

−1
2

√
3

2


∆ (2.33)

Notice that if we want to associate this lattice with a basis of a frame (F 1), the

vectors of this basis have to be orthogonal to the basis vectors of the lattice.

Moreover, the stepsizes associated with the vectors that compose F 1 have to be

calculated so that the lines in R2 intersect exactly to generate MΛ1 . It is trivial

to show by simple trigonometry that F 1 and the associated stepsizes are:

F 1 =




0 1

√
3

2
1
2


 ∆1

1 = ∆1
2 =

√
3

2
∆ (2.34)

It is shown in [30] that a sublattice SΛ, which is geometrically similar to Λ1, is

generated by (using complex notation) u = a+ bω and v = ω(a+ bω), where ω =

−1/2 + i
√

3/2, a, b ∈ Z, and the index |SΛ/Λ1| of the corresponding sublattice

is |SΛ/Λ1| = a2 − ab+ b2. Translating this to matrix notation, we have that the

possible generator matrices for SΛ are given by:

MSΛ =




(
a− b

2

) √
3

2
b

−a+b
2

√
3

2
(a− b)


∆ (2.35)
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Notice also that MΛ1 and MSΛ are related as follows:

(a) (b)

Figure 2.7: Example for r = 2: a) Structure of the sublattice SΛ with a = 1, b =
3; b) Structure of the EVQ and unit cell.

MSΛ = MΛ1




(
a− b

2

) √
3

2
b

−
√

3
2
b

(
a− b

2

)


 =




a b

−b a− b


MΛ1 (2.36)

which corresponds to a rotation of an angle θ such that tan(θ) =
√

3b
2a−b

and a

scaling of
√
a2 − ab + b2.

Using this approach, we can design again frames and PSQ’s such that a

periodic EV Q is generated. Fig. 2.7 and 2.8 show examples of periodic EVQ’s

for redundancies r = 2 and r = 3, respectively.
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(a) (b)

Figure 2.8: Example for r = 3: a) Structure of the sublattice SΛ with a = 1, b =
3; b) Structure of the EVQ and unit cell.

Example 5 If we take a = 1, b = 3, the corresponding hexagonal sublattice will

have index |SΛ2/Λ1| = 7. The corresponding frame of r = 2 and stepsizes are

given by:

F =




0 1

√
3

2
1
2

3
√

3
2
√

7
1

2
√

7

√
3√
7

−2√
7




∆1
1 = ∆1

2 =
√

3
2

∆

∆2
1 = ∆2

2 = 1
3

√
21
2

∆

(2.37)

The values for d2
1 and d2

2 that are used in this example are d2
1 = d2

2 = 3.

Example 6 An example for r = 3 can be easily constructed from Example 5 by

adding 2 vectors which are integral combinations of the vectors that compose the

frame for r = 2. One additional vector is obtained by summing the first 2 vectors

in (2.37). Another vector is obtained by summing the third and fourth vectors
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in (2.37). The addition of these 2 vectors do not change the sublattice structure

(although we are adding more hyperplanes). This can be seen in Fig. 2.8(a).

Fig. 2.8(b) shows the final EV Q that is obtained.

It is also possible to construct periodic EV Q’s for higher dimensions using re-

dundant families which are not comprised of orthogonal bases, by means of other

types of lattices such as those studied in [30] and [45]. Higher dimensional designs

having good symmetry properties are studied in detail in Chapter 3 and can also

be found in [102].

2.4 Consistent Reconstruction in Periodic

Quantizers

In this section, we analyze how to achieve consistency in periodic quantizers under

simple reconstruction algorithms (e.g. linear or look-up table).

2.4.1 Consistency under linear reconstruction using the

minimal dual frame

Although the results presented in this section hold for any type of frame and

any type of linear reconstruction algorithm, the proofs of these results are much

clearer and much more intuitive for the case of linear reconstruction using the
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minimal dual frame and for tight frames composed of a set of r orthogonal bases.

We show in Theorem 2 that, given a frame, a necessary condition to have con-

sistency under linear reconstruction is that the scalar quantizers acting on the

coefficients are such that the resulting EVQ has a periodic structure. This result

follows basically from the fact that when there is no periodicity in the partition

defined by an EV Q, the vertices of any two lattices Λj1 and Λj2 (j1 6= j2) can

have arbitrary relative positions, at least in one of the components, which makes

it always possible to find linearly inconsistent cells. On the contrary, when there

is periodicity, there is only a finite number of relative positions (see Fig. 2.4) and

linear consistency is not precluded.

The proof of this result is exactly the same conceptually for any value of

the redundancy r and for any dimension N because the crucial point is just the

periodicity in the structure regardless of the underlying frame that is used. Since

for higher dimensions N and higher redundancies r, the proof becomes much

more tedious without adding anything new conceptually, we reduce the proof to

the r = 2 and N = 2 case. However, for completeness, examples will be shown

where linear consistency is satisfied for r > 2 in R2.

We need the following Lemma:
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Lemma 3 Let Λ1 be a rectangular lattice with MΛ1 = diag[∆1
1,∆

1
2] and Λ2 an-

other (generic) lattice whose generator matrix is parameterized as:

MΛ2 =




∆2
1 0

0 ∆2
2







cos(θ) sin(θ)

−sin(θ) cos(θ)


 where ∆2

1,∆
2
2 ∈ R+, θ ∈]0,

π

2
[

(2.38)

Then, the following equations:

∆2
1 cos(θ)−∆2

2 sin(θ) = q1∆
1
1 (2.39)

∆2
1 cos(θ) + ∆2

2 sin(θ) = q2∆
1
1 (2.40)

∆2
1 sin(θ) + ∆2

2 cos(θ) = q3∆
1
2 (2.41)

∆2
1 sin(θ)−∆2

2 cos(θ) = q4∆
1
2 (2.42)

where q1, q2, q3, q4 ∈ Q(Rational numbers)

are all satisfied iff MΛ2 = diag[1/d2
1, 1/d

2
2]MSΛ2 where SΛ2 is a sublattice of Λ1,

that is, MSΛ2 is given as in (2.19), and d2
1, d

2
2 ∈ Z+.

Proof: See Appendix A.6.

The consequence of this Lemma is that, when Λ2 meets the conditions of the

Lemma, the vertices belonging to Λ2, which can also be written as:

{ωi} = {k1(∆
2
1ϕ

2
1 + ∆2

2ϕ
2
2) + k2(∆

2
1ϕ

2
1 −∆2

2ϕ
2
2), k1, k2 ∈ Z} (2.43)
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have only a finite number of different (relative) positions within the cells CΛ1

of

the quantizer Q1 (see for example Fig. 2.5(b)). In Theorem 2, we use this fact so

that if any of the previous 4 equations (2.39),(2.40),(2.41),(2.42) is not satisfied,

we can always find vertices where at least one component can have any arbitrary

position within a cell of the quantizer Q1, and this allows us to find (linearly)

inconsistent cells.

Theorem 2 If the EVQ is a non-periodic quantizer in R2, then it is always

possible to find a linearly inconsistent cell.

Proof: See Appendix A.7.

(a) (b)

Figure 2.9: Examples of Linearly Consistent Quantizers for a) r = 3 and b) for
r = 4. Minimal dual frame is used for the linear reconstruction.

Thus, periodicity in an EV Q is a necessary condition to achieve consistency

under linear reconstruction. Notice that in a periodic EV Q there are only finitely
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many distinct EVQ cells. Checking whether linear consistency is satisfied, we

only need to check on the distinct EV Q cells, which are actually the EVQ cells

inside the fundamental polytope of the coincidence site lattice ΛCSL. In fact, given

a set of lattices Λ1,Λ2, . . . ,Λr, we can always easily enumerate the positions of

the vertices of each of them inside CCSL
o in terms of the corresponding generator

matrices and check computationally whether consistency is satisfied or not.

We show in Fig. 2.9 examples of linear consistency in R2 for redundancies

r = 3, 4, where the reconstruction vectors have been represented by ′◦′.

2.4.2 Consistent reconstruction algorithms with improved

performance

Given a regular EV Q, it is desirable for having a good rate-distortion perfor-

mance that the reconstructions be located near the centroids of the EV Q cells.

It can be seen in Fig. 2.9 how the consistent linear reconstructions given by the

minimal dual frames for r = 3, 4 are not located near the centroids corresponding

to a uniform distribution. In order to achieve a better performance, it is neces-

sary to use more intelligent (although simple and low complexity) reconstruction

algorithms which make explicit use of the periodicity property.
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2.4.2.1 Reconstruction with a small look-up table in Periodic EV Q’s

Given a periodic EVQ, it is possible to reconstruct efficiently and accurately by

using a small size look-up table scheme, which also ensures consistency. This can

be done for any periodic EV Q. Let us first consider the case of tight frames

composed by a set of orthogonal bases. Assume, for simplicity and without loss

of generality, that N = 2 and let Po be the smallest rectangular polytope which

is a basic unit polytope for the partition defined by the EV Q. Notice that

although the minimal unit cell CCSL
o may not be rectangular, from Lemma 1,

since Λ1 is rectangular, it is always possible to find a rectangular polytope Po

(with volume larger than the volume of CCSL
o ) which is also a (non-minimal)

basic unit polytope. The reason of choosing this basic rectangular polytope is

that the reconstruction algorithm becomes even simpler in this case. Since the

periodicity of the EV Q is determined by ΛCSL, the smallest rectangular polytope

PCSL covering CCSL
o is a valid candidate for Po. It is clear that, due to the

periodicity determined by PCSL, any vertical or horizontal shift of PCSL by an

integer number of stepsizes (∆1
1 is the horizontal stepsize and ∆1

2 is the vertical

stepsize) gives rise to another polytope which also keeps periodicity.

In Fig. 2.10, the polytope that has been chosen is indicated using bold line.

Consider the polytope Po and let N1
1 and N1

2 be the number of stepsizes that

determine the length of the sides (vertical and horizontal) of Po. For the example
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Figure 2.10: Reconstruction algorithm based on look-up table: ′◦′ represents
reconstruction vectors, ′∗′ the values of the quantized coefficients which define
the equivalent cell in the unit cell Po, ’x’ represents the input vector. All the
information is first translated to the unit cell Po, then the reconstruction vector
of the equivalent cell is read, and finally it is translated back to the proper cell.
Notice that in this example, with this look-up table scheme, the EV Q cells are
actually (minimum distance) Voronoi cells.

in Fig. 2.10, N1
1 = 2 and N1

2 = 2. Let vo be the center of Po. Given any

input signal x, it is straightforward to find the equivalent polytope Pk, which is

a translation of Po given by:

Pk = Po + n1
1N

1
1 ∆1

1 + n1
2N

1
2 ∆1

2, for some integers n1
1, n

1
2 ∈ Z (2.44)

The basic idea is that given any EVQ cell CEV Q
i it is possible to find very

easily and quickly the equivalent cell (by equivalent cell, we mean a congruent

cell that is exactly equal in shape and size) which is inside Po. Given an input

signal x whose quantized coefficients are yq = PSQ(y), where y = Fx, it

62



is possible to translate the values of the quantized coefficients to other values

yPo
q which define the equivalent cell V EV Q

io that is inside Po. This translation is

illustrated in Fig. 2.10. Let vk be the center of the polytope Pk. In this particular

case, since Po is rectangular (cubic in higher dimensions), it is clear that vk can

be calculated by a simple floor operation because Po is rectangular. If we let

d = vo − vk, then if x̂o is the reconstruction vector corresponding to V EV Q
io , the

reconstruction corresponding to CEV Q
i is just x̂ = x̂o − d. The reconstruction

x̂o is obtained by just looking up the corresponding reconstruction vector stored

in a look-up table. Notice that we can perform optimal reconstruction for the

case of a uniform input distribution, because, for each EVQ cell inside Po, we

can store a vector obtained by averaging over all the vertices (extreme points) of

the cell (barycenter of the cell), which can be shown to be exactly equal to the

centroid of the corresponding (convex) cell assuming a uniform distribution [56].

In the example shown in Fig. 2.10 the needed look-up table consists of only 24

reconstruction vectors. The fundamental advantage provided by the periodicity

is that if the periodic EVQ is well designed, the size of the look-up table can be

made small, and does not increase with the rate of the EV Q. Notice also that

for this example, with the reconstructions given by the look-up table, the EV Q

cells are actually (minimum distance) Voronoi cells. For the case of arbitrary

EV Q’s, a valid polytope Po is always given by CCSL
o and a similar reconstruction

procedure can be followed. Now, vk will be calculated by quantizing with respect
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to ΛCSL which will not be in general a rectangular lattice. For instance, for those

periodic EV Q’s based on hexagonal lattices in R2, a valid polytope Po will be an

hexagonal cell. For instance, in Fig. 2.8, a valid Po is illustrated.

Because of the periodicity in the structure of any periodic EVQ, the informa-

tion can be easily encoded in an embedded (succesive) manner by dividing it into

two parts, the entropy associated with the cells {Pk}, and the conditional entropy

associated with the structure of cells that is inside each Pk, which is the same

structure as in Po. In Fig. 2.10, for instance, given a certain polytope Pk, which

can be found by quantizing the coefficients {y1
1, y

1
2} respectively with stepsizes

2∆1
1 and 2∆1

2 (this can be viewed as a coarse prequantization), the only addi-

tional information that has to be stored to encode a vector is an index between

1 and 24.

The vectors of the look-up table can be easily calculated in any dimension

N by using linear programming. In order to do so, for each EVQ cell in the

polytope Po, we run a large enough number of linear programs with different

cost vectors pointing in different directions in RN and where the constraints are

such that they define the specific EVQ cell in terms of inequality constraints.

This allows us to calculate all the vertices of the corresponding EVQ cell and by

taking the average we obtain a good approximation of its centroid. Moreover,

it is not necessary to calculate the vectors of the look-up table for each rate of

the EVQ because by linearity, all the vertices scale their coordinates linearly and
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simmultaneously with ∆1
1. Therefore, we only need to calculate these vectors

once for the rate corresponding to ∆1
1 = 1. This procedure is explained in greater

detail in [102] and Chapter 3.

2.4.2.2 Improved linear reconstruction in Periodic EV Q’s with

spherical symmetry

It is also possible to design periodic EVQ’s with additonal symmetry properties so

that a very simple improved linear reconstruction algorithm can be used to obtain

reconstructions that are located near the centroids of the EVQ cells (assuming

a uniform distribution).

Let us consider a periodic EV Q that satisfies the following 2 properties:

1. It is consistent under the usual linear reconstruction using the minimal dual

frame.

2. These linear reconstruction vectors are located with circular symmetry

(spherical symmetry for N > 2) with respect to the lattice points of ei-

ther the coincidence site lattice ΛCSL or a coset (translation) of it.

Several examples have been found where this circular symmetry is satisfied, as

for instance, the two examples shown in Fig. 2.11 for redundancies r = 2 and

r = 3, and the example 4 for dimension N = 4 and r = 3. The circular symmetry
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(a) (b)

Figure 2.11: Examples of circular symmetry in R2: a) r = 2. Squares represent
the lattice points of a coset of ΛCSL; b) r = 3. Squares represent the lattice
points of ΛCSL.

makes it simple to design a perturbation so that the reconstruction vectors that

are obtained are close to the centroids with respect to a uniform distribution.

Let x̂LQ be the reconstruction given by a usual lattice quantizer with repro-

duction vectors given by the points of the coincidence site lattice or a translation

of it. For the examples shown in Fig. 2.11, the points of these lattices are repre-

sented by squares and one of the Voronoi cells is also highlighted with bold lines.

It is very simple to improve the linear reconstruction given by the minimal dual

frame by performing a perturbation:

x̂ = x̂MD + δ∆1
1(x̂MD − x̂LQ) (2.45)
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where x̂MD is the reconstruction given by the minimal dual frame and the direc-

tion of the perturbation is determined by the difference vector d = x̂MD − x̂LQ.

Thus, the magnitude of the perturbation is ‖d‖δ∆1
1 and the value of δ has to be

chosen appropiately so that the final reconstruction x̂ is as close as possible to the

centroid of the cell. Note that once the best value for δ has been chosen, this is

fixed and independent of the input vector x and the scaling of the lattices changes

only ∆1
1. The main advantage of this method with respect to the look-up table

scheme is that we do not need a look-up table to store the reproduction vectors

of the cells contained inside the minimal periodic unit of the tesselation. How-

ever, further research is necessary in order to understand what are the necessary

and sufficient conditions which ensure that the property of circular symmetry is

satisfied.

2.5 Numerical results for some periodic EV Q

designs and Applications

Our designs are more suitable to be used for small redundancies and low to moder-

ate dimensions, and have a complexity similar to the usual linear reconstruction.

At high redundancies, it is always possible to find designs but they may not be

very efficient in terms of coding due to the number of constraints in the quanti-

zation stepsizes that have to be met and also the number of reproductions which
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Figure 2.12: Comparison, for a 2-dimensional uncorrelated Gaussian source, of
(1) usual linear reconstruction with a non-periodic quantizer with equal quan-
tization stepsizes (classic system); (2) reconstruction in a periodic EVQ with
different quantization stepsizes using either the look-up table scheme or the im-
proved linear reconstruction (the difference in performance for these two systems
is negligible for these examples); (3) usual linear reconstruction in a periodic
quantizer with different quantization stepsizes. The values of MSE are given
per vector in dB and the bit rate is given in bits/vector; (a) corresponds to the
example shown in Fig. 2.11(a) with r = 2 and (b) corresponds to the example
shown in Fig. 2.6(a) with r = 3 68



have to be stored in the look-up table may be large. However, note that for some

important applications such as those involving very high-frequency analog signals

(e.g. optical signals), it is usually not feasible to use redundancies higher than

r = 3 or r = 4. Moreover, there exist also other systems called Polyphase A/D

converters [91, 51] which divide the bandwidth of the input signal into different

narrow subbands (low dimension), and use a different low-rate A/D converter for

each of the subband signals, that is, where each of these A/D converters works at

a low oversampling ratio. Our system can also be designed theoretically for many

different dimensions as shown by Sloane and Beferull-Lozano in [102] and Chap-

ter 3 but the generated tesselations can become very complicated for dimensions

N > 8 and the number of elements in the look-up table can become also large.

For N ≤ 8, it is possible to find constructions such that the number of different

cells (number of elements in the look-up table) is sufficiently small.

We have compared the rate-distortion performance of a) usual linear recon-

struction (minimal dual frame) with a non periodic EVQ with equal quantiza-

tion stepsizes, that is, the quantization system used in all the previous work; b)

reconstruction based on a periodic EV Q with different quantization stepsizes us-

ing either the look-up table scheme or the improved linear reconstruction (their

difference in performance is negligible in these examples) and c) usual linear

reconstruction (minimal dual frame) used with a periodic EVQ with different

quantization stepsizes. The bit rate associated with the quantized tight frame

69



coefficients is obtained by measuring the joint entropy of all these quantized

coefficients, and the distortion is measured in terms of the MSE. The input

source that has been used is a 2-dimensional Gaussian distribution N (0, σ2I)

with σ = 0.3. The periodic EV Q’s that have been used are the ones shown

in Fig. 2.11(a) and Fig. 2.6(a), respectively for r = 2 and r = 3. For these

2 examples, the rate-distortion performances of the look-up table scheme and

the improved linear reconstruction using a periodic EVQ are approximately the

same because the reconstructions can be taken to be practically the same and

obviously, the associated rate is also the same.

It can be seen in Fig. 2.12 that the best performance is clearly achieved by

the look-up table and the improved linear reconstruction systems, with a gain of

around 0.2 dBs for r = 2 and a gain of around 0.7 dBs for r = 3 over the classic

system that uses linear reconstruction and the same quantization stepsizes.

At the same time, Fig. 2.12 also shows clearly the fact that, a linearly consis-

tent EVQ does not necessarily yield a better rate-distortion performance than a

different linearly non-consistent EV Q′ at the same rate, that is, by enforcing a

periodic structure we may get a quantizer with worse performance than another

quantizer whose structure results in linear inconsistency; however, when we use a

periodic EV Q and enforce the consistent reconstructions to be sufficiently close

to the real centroids by using our reconstruction methods, the periodic EV Q

achieves, in all cases, a superior performance over the non-periodic EVQ.
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2.5.1 Implications for Oversampled A/D conversion

It can be shown that the oversampling of a periodic bandlimited signal can be

expressed as a frame operator in RN whose input are the Fourier coefficients

(finite discrete Fourier expansion) of the signal that is sampled [84, 111]. As

a particular illustrative case, if we consider the space of sinusoids of period T

spanned by {cos(2πt/T ), sin(2πt/T )}, the sampling and uniform scalar quan-

tization in amplitude of these signals is equivalent to the quantization of an

overcomplete expansion (frame) in R2. Each sampling time ti is directly associ-
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Figure 2.13: Scalar quantizers (time domain) corresponding to the EVQ in
Fig. 2.6(a)

ated with the vector ϕi = [cos(2πti/T ), sin(2πti/T )] and all these vectors define

the equivalent frame in R2. Moreover, by Parseval’s Theorem, we have that

MSE = ‖ŷ(t)−y(t)‖2
T = ‖x̂−x‖2, where ŷ(t) is the reconstructed sinusoid, that

is, the MSE of the reconstructed sinusoidal signal in the converter is the same
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as the MSE that occurs on the frame domain. Thus, given a tight frame in R2

together with a set of different stepsizes such that a periodic EVQ is obtained,

if we translate the values of angles to sampling times, we can obtain the scalar

quantizers that are applied at the corresponding sampling times. For instance,

the quantizer in Fig. 2.6(a) gives rise to a converter with uniform sampling in

time and with two different scalar quantizers, one with a stepsize larger than the

other one (see Fig. 2.13).

2.6 Conclusions

The basic results presented in this chapter are as follows. We study the problem

of achieving consistency in quantized overcomplete expansions with low com-

plexity algorithms. Consistency leads to equivalent vector quantizers which are

regular. In order to achieve this goal, we allow the use of different stepsizes in the

scalar quantization of the expansion coefficients and construct equivalent vector

quantizers (EVQ) having cells with a periodic structure. Periodic quantizers are

defined in terms of lattices and sublattices with certain properties and we give

various design examples based on different tight frames. On the one hand, we

show that periodicity is a necessary condition to have consistency under simple

linear reconstruction. On the other hand, a periodic structure makes it possible

to reconstruct efficiently and accurately using either a small look-up table whose
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size does not increase with the rate of the quantizer or using a simple improved

linear reconstruction for periodic EV Q’s with certain convenient structural prop-

erties. Regarding future work, it should be noticed that further research is needed

in order to make it possible to apply our approach to A/D conversion of arbitrary

band-limited signals.
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Chapter 3

Periodic Quantizers based on good Lattice

Intersections: Construction and Analysis∗

3.1 Introduction and Motivation

In Chapter 2, we have studied the design of the different bases involving the

overcomplete expansion together with a set of scalar quantizers so that a peri-

odic tesselation was created. Equivalently, we were finding a set of simple lattices

(ideally cubic lattices) Λ1,Λ2, . . . ,Λr whose intersection was not empty, thus lead-

ing to the periodicity of the quantization cells of the EVQ resulting from those

lattices.

In this chapter, we pose and solve a different question. Let Λ be an N -

dimensional lattice Λ and QΛ be the associated lattice vector quantizer (LV Q)

∗Some of the work in this chapter was published in [102]. This work was carried out in
collaboration with N. J. A. Sloane at AT&T Shannon Laboratory.
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based on Λ [34, 55, 62] defined as a mapping QΛ : RN → RN which maps x ∈ RN

to the closest lattice point, i.e., to the lattice point at the center of the Voronoi

cell containing x (in the case of a tie, one of the closest lattice points is chosen at

random). Suppose now that we decompose Λ as the intersection ofN -dimensional

lattices Λ1, . . . ,Λr. Then, we can consider replacing the quantizer QΛ by the

“multiple description quantizer” defined as the product vector quantizer (PV Q):

QΛ1 ×QΛ2 × . . .×QΛr . (3.1)

which, given an input vector x, simultaneously quantizes it with respect to each

of the Λj. This gives rise to a different partition of RN : the new cells are now the

intersections of the Voronoi cells of the individual Λj, and the r outputs obtained

with the (PV Q) in (3.1) specifies uniquely the cell to which x belongs. Given this

cell, one reconstructs with the center of that cell using a look-up table scheme.

Notice that the tesselation that is created is periodic because of the intersection

property. Therefore, these type of quantizers are constructed following these

steps: (a) Decompose Λ as the intersection of N -dimensional lattices Λ1, . . . ,Λr,

(b) Apply each individual LV Q QΛj giving rise to a lattice tesselation of the space

with all the cells being congruent, (c) Find the intersection between the cells of

all the individual quantizers, which yields a periodic tesselation, (d) Reconstruct

with the center of the cell where the input signal x falls in.
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Intuitively, if QΛ is a good lattice quantizer, the periodic quantizer QΛ1 ×

QΛ2 × . . .×QΛr with Λ = Λ1∩Λ2∩ . . .∩Λr is expected to yield a tesselation that

will contain some cells that are congruent to the Voronoi cell defined by QΛ which

is a good cell in terms of its quantization performance. Thus, it is legitimate to

consider the following problem. Given a good lattice Λ (e.g., such that QΛ is

a good lattice quantizer), we want to find a set of lattices {Λ1,Λ2, . . . ,Λr} such

that the following properties are satisfied:

1. Λ = Λ1 ∩ Λ2 ∩ . . . ∩ Λr .

2. Λ1,Λ2, . . . ,Λr are as simple as possible. Ideally, we would like these lattices

to be cubic.

3. The periodic quantizer QΛ1 ×QΛ2 × . . .×QΛr has as good a rate-distortion

performance as possible.

Notice that in Chapter 2 we did not start by imposing a certain good intersection

lattice Λ such that its corresponding quantizer QΛ was good but we went in

the other direction. Inspired from this work, we now try to see if forcing the

intersection to be a good lattice, this results in good periodic quantizers.

Next, we identify several reasons that motivate the study of these periodic

quantizers:

1. If the Λj are simpler lattices than Λ, then it may be easier to compute the

reconstruction given by the periodic quantizer QΛ1 ×QΛ2 × . . .×QΛr than
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obtaining the reconstruction given by QΛ. Notice however that, in gen-

eral, for a given input vector x, QΛ(x) is different than the reconstruction

obtained using the periodic quantizer QΛ1 ×QΛ2 × . . .×QΛr .

2. This approach could lead to new insights on the so-far intractable problem

of finding good lattice quantizers in high dimensions (cf. [34, Chap. 2]).

Even in 24 dimensions the best lattice quantizer presently known, the Leech

lattice, is very complicated to analyze and to implement — its Voronoi cell

has 16969680 faces and over 1021 vertices ([34, Chaps. 21, 22, 23, 25], [7],

[116], [117]).

3. The individual QΛj (x) could be communicated over separate channels; in

the event of one or more channels failing a reasonably good approximation

to x will still be obtained. Other multiple description quantizers have

recently been studied in, for example, [45], [115].

4. This approach could lead to quantizers with a lower mean squared error

than those obtained from usual lattice quantizers. The 4 particular numer-

ical examples we give in this work do not show favorable results but this

work still gives the first basic step towards the solution of this problem and

some future work is considered in Section3.5.
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5. The study of new decompositions of complicated lattices into simple lat-

tices is also useful in terms of finding simple lattices nested into complicated

lattices. Nested lattices have been used lately for a large variety of commu-

nication problems when side information is available to either the encoder

or the decoder [137].

Good symmetry properties are required because any asymmetry will yield cells

with bad shapes and very complicated tesselations of the space which are not

useful in practice. There is a slight difference with respect to the setting given in

Chapter 2, which is that now each individual quantizer QΛj is a usual LV Q having

0 as a reconstruction point while in Chapter 2 the 0 vector is not a reconstruction

vector but a point belonging to the boundary of the quantizers, as it is usual in

the context of A/D conversion related applications. We want to clarify that this is

done without loss of generality because in this chapter, our focus is more on the

rate-distortion performance of periodic quantizers rather than A/D conversion

related applications. All the constructions and designs given in this chapter can

be converted to the case where each lattice Λj gives the boundary points of the

cells of a periodic quantizer by shifting appropiately each individual quantizer

QΛj , so that the reconstruction points in each individual quantizer are given now

by a shift c+Λj of the lattice Λj. However, notice that obviously this will change

the shape of the cells!. By forcing each individual quantizer QΛj to have 0 as a
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reconstruction point and also forcing the intersection to be a good lattice Λ, we

expect to get good cells. This is clarified with the following example.

A 

O A 

B

B

C

C

Figure 3.1: The hexagonal lattice (heavy circles) as the intersection of three
rectangular lattices (spanned by the vectors OA, OB and OC resp.).

Consider the following appealing example, shown in Fig. 3.1. In Chapter

2, we showed a similar example in Fig. 2.6(a) which is distinct from Fig. 3.1

in that, as just described, the set of reconstruction points does not contain the

origin. The familiar planar hexagonal lattice A2 (large circles) can be obtained

as the intersection of three rectangular lattices, all rotations of each other by

120◦: these are the lattices generated respectively by the two vectors OA, the

two vectors OB and the two vectors OC. If we use generator matrices to specify
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these lattices (the rows span the lattices) then the three rectangular lattices Λ1,

Λ2, Λ3 have generator matrices




√
3 0

0 1


 ,




√
3

2
1
2

−
√

3
2

3
2


 ,




−
√

3
2

1
2

√
3

2
3
2


 (3.2)

and their intersection has generator matrix




√
3 1

0 2


 , (3.3)

which is indeed a copy of the A2 lattice. In this case, the tesselation contains

A 

B

B

C

C

O 

Figure 3.2: Tesselation associated with the cells in Fig. 3.1.

four kinds of cells, as shown by the heavy (solid) lines in Fig. 3.2. For example, if

the point x being quantized is close to [0, 0], then QΛ1(x) = QΛ2(x) = QΛ3(x) =

[0, 0], and the cell containing x is the intersection of the Voronoi cells containing

[0, 0] of the three Λj. This is the horizontally shaded hexagon in Fig. 3.2. Just to
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the North of this hexagon the cell is the intersection of the Voronoi cell for Λ1 that

contains [0, 1] with the Voronoi cells at [0, 0] for Λ2 and Λ3: this is the small cross-

hatched equilateral triangle. There are two further cells that are obtained in a

similar manner: the diagonally shaded isosceles triangle and the larger vertically

shaded equilateral triangle. Notice that if we had used the individual quantizers

as in Chapter 2, the resulting cells would have been the triangles that can be seen

in Fig. 3.1. In that case, if MΛj is the generator matrix of Λj, the reconstruction

points for each individual quantizer are given by [k1 + 1/2, k2 + 1/2]MΛj , the

Voronoi cells for each individual quantizer whould have boundary points given

by Λj and the intersection of these cells would be the triangles in Fig. 3.1. On the

other hand, in this chapter, by making each individual quantizer QΛj have [0, 0] as

a reconstruction point, when performing the intersection of the Voronoi cells for

the different individual quantizers, we obtain an hexagonal cell in Fig. 3.2 for the

periodic quantizer. In summary, the lattice decomposition of Λ as an intersection

of the individual lattices Λ1, . . . ,Λj is kept the same, but the individual quantizers

that are used are related by shift, which implies also that the Voronoi cells are

related by the same shift, which eventually, when calculating the intersection of

the Voronoi cells of the individual quantizers, results in a different tesselation in

each case for the periodic quantizer. Keeping this in mind, the main issue here is

to obtain the lattice decompositions. The tesselation will be implied directy by
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this decomposition and the choice we have taken in this chapter for the individual

quantizers QΛj , j = 1, . . . , r.

The present work was also in part prompted by the question of how to find

good constructions of periodic quantizers for dimensions higher than 2, since, as

it is well known, the performance in quantization increases as the dimension is

increased.

In Section 3.2, we introduce some terminology and notation. Section 3.3

describes some general constructions for writing a lattice as an intersection of a

small number of simpler, decomposable lattices in different dimensions. We give

a number of examples, including the body-centered cubic (bcc) and face-centered

cubic (fcc) lattices D∗
3 and D3, the root lattices D4, E

∗
6 , E8, the Coxeter-Todd

lattice K12, the Barnes-Wall lattices BWn and the Leech lattice Λ24. We focused

attention on these lattices because A2, D
∗
3, D4, E

∗
6 , E8, K12, BW16 and Λ24 are

the best quantizers currently known2 in their dimensions [34]. In fact, A2 is

optimal among all two-dimensional quantizers [113], and D∗
3 is optimal among

three-dimensional lattice quantizers [6].

Table 3.1 summarizes the main decompositions mentioned in this work. The

resulting periodic tesselations or honeycombs3 have not been studied before.

2Assuming always that the random vector to be quantized is uniformly distributed over a
large ball in RN .

3Of course there is an extensive literature dealing with the Voronoi and Delaunay cell de-
compositions associated with various lattices — see for example [31], [35], [33], [34], [37].
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Lattice Copies Component Sections
lattice

A2 3 rectangular 3.1, 3.3, 3.4.1
A∗

3 (bcc) 3 “rectangular” 3.3, 3.4.2
A3 (fcc) 4 “prismatic” 3.3, 3.4.3
D4 3 (Z)4 3.3, 3.4.4
E∗

6 4 (A∗
2)

3 3.3
E8 15 (Z)8 3.3
E8 10 A4

2 3.3
E8 5 D2

4 3.3
K12 21 A6

2 3.3
Leech 4095 (Z)24 3.3

BWN

∏m−1
j=1 (2j − 1) (Z)N 3.3

Table 3.1: Summary of decompositions described in this chapter.

In Section 3.4 we first analyze the geometry of the tesselations (decomposi-

tions of space into cells) associated with the periodic quantizers is analyzed and

we give a general expression for the normalized (dimensionless) second moment

for any periodic quantizer at high rates. Then, we determine the honeycombs

(periodic tesselations) and mean squared errors for the cases of the A2, bcc, fcc

and D4 lattices, respectively. The final Section3.5 contains some conclusions and

comments.

3.2 Notation

Let Λ be a lattice in RN . The dual lattice will be denoted, as in Chapter 2, by Λ∗.

The norm of a vector x ∈ RN in this chapter is taken as its squared length 〈x,x〉.

A similarity σ is a linear map from RN to RN such that there is a real number
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n with 〈σ(x), σ(y)〉 = n〈x,y〉 for x,y ∈ RN . If Λ and M are similar lattices we

write Λ ∼= M . A lattice Λ is said to be n-modular if Λ ∼= Λ∗ under a similarity that

multiplies norms by n. For example, the root lattices (Z)N and E8 are 1-modular,

A2 is 3-modular, and D4 is 2-modular. We write Λ1 +Λ2 + . . .+Λr for the lattice

generated by the basis vectors of thelattices Λ1,Λ2, . . .. Two lattices or polytopes

are congruent if one can be mapped to the other by an element of the special

orthogonal group SO(N), which is the group of isometries (distance-preserving

transformations of the space) in RN . Aut(Λ) represents the automorphism group

of a lattice, that is, the set of isometries (SO(N)) that fix the origin and take the

lattice to itself4. Sj will denote the symmetric group, that is, the set of all the

permutations of j elements (j! possible permutations). A lattice Λi is said to be

decomposable if it is the direct sum of congruent copies of one or more lattices

with lower dimension. For instance, Λi = (Z)2 is the direct sum of 2 congruent

copies (related by a rotation of 90◦ degrees) of the one-dimensional lattice Z.

3.3 Writing a lattice as an intersection

Let Λ be a lattice in RN . We wish to write Λ as an intersection

Λ = Λ1 ∩ Λ2 ∩ . . . ∩ Λr (3.4)

4The automorphism of the hexagonal lattice for instance has order 12 since it is generated
by a rotation through 60◦ and a reflection in a line joining the center of two spheres
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where r is small and the Λj are pairwise congruent and as “simple” as possible.

Ideally we would like each Λj to be a direct sum of congruent copies of a fixed low-

dimensional lattice K such as Z, A2 or D4, but this is not always possible. In the

example shown in Fig. 3.1, for instance, the lattices Λj’s are rectangular rather

than square lattices. If this is not possible, we ask that the Λj be decomposable

into a direct sum of as many congruent low-dimensional sublattices as possible.

If we were going to investigate the honeycombs associated with higher dimen-

sional intersections such as those for E∗
6 or E8, we would impose an additional

formal requirement that the Λj form an orbit under some subgroup of the auto-

morphism group Aut(Λ), in order to guarantee that the honeycomb be symmetric.

However, for the low-dimensional cases, we have been able to achieve this sym-

metry by using the natural decompositions, without introducing the machinery

of group theory.

Summarizing, these are the requirements imposed for the decomposition:

• {Λj}r
j=1 are pairwise congruent, that is, it is possible to go from one to

the other through a rotation and/or a traslation. This will result in good

symmetry properties.

• Each Λj is as simple as possible, but not necessarily cubic. This will result

in fast decoding with respect to the cells of the resulting tesselation.

• Each Λj is decomposable in one of the following ways:
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1. It is a cartesian product of a lattice fixed lattice Λo, that is, Λj =

K × . . .K = (K)m, where K is a good low dimensional lattice such as

Z, A2, D4.

2. Cartesian product of different simple low-dimensional lattices.

This Section describes some general methods for finding intersections. We

will make use again as in Chapter 2 of the de Morgan’s law [74, 87]. Since it is

crucial for finding the different constructions, we rewrite it again for clarity and

completeness:

Theorem 3 If Λ1, . . . ,Λr are lattices in RN then

Λ1 ∩ . . . ∩ Λr = ((Λ1)∗ + . . .+ (Λr)∗)∗ .

Method 1: Partitioning the minimal vectors for Λ∗. The first method is

given by the following proposition:

Proposition 1 Given an N-dimensional lattice Λ, if:

1. Λ∗ is generated by its minimal vectors, i.e. the vectors of minimal nonzero

norm.

2. Minimal vectors of Λ∗ can be partitioned into r congruent copies (sets) of

minimal vectors. Let (K)N/κ be the lattice generated by one of these sets,

where K is a lattice of dimension κ.
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3. K is also modular, that is, K and K∗ are related by scaling, rotation and/or

reflection.

then, taking Λj to be the j-th copy of the lattice (K∗)N/κ, the intersection property

is satisfied.

Proof: See Appendix B.1

Whether this partitioning is possible is an interesting question in its own right.

For example, can the 240 minimal vectors of E8 be partitioned into 15 copies of

the minimal vectors of (a scaled version of) (Z)8, i.e. into 15 coordinate frames5

or into 10 copies of the minimal vectors of (A2)
4? Partial answers are given below.

We have studied constructions for the cases where K is one of Z, A2 or D4.

We now give a number of examples, beginning with the case when K = Z.

D4. The lattice D4 may be taken to have generator matrix




2 0 0 0

0 2 0 0

0 0 2 0

1 1 1 1




(3.5)

5A coordinate frame in RN is a set of 2N vectors ±v1, . . . ,±vN with 〈vi, vi〉 = a constant,
〈vi, vj〉 = 0 if i 6= j.
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and then the 24 minimal vectors consist of eight of the form [±2, 0, 0, 0] and 16

of the form [±1,±1,±1,±1]. D4 is 2-modular and is generated by its minimal

vectors. The minimal vectors may be partitioned into three coordinate frames,

consisting of ±1 times the rows of each of the matrices




2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2




,




+1 +1 +1 +1

+1 −1 +1 −1

+1 −1 −1 +1

+1 +1 −1 −1




,




−1 +1 +1 +1

−1 −1 +1 −1

−1 −1 −1 +1

−1 +1 −1 −1




.

(3.6)

After applying the Proposition 1 and rescaling, we conclude that if Λ1, Λ2, Λ3

(∼= (Z)4) have the generator matrices given in (3.6), then

Λ1 ∩ Λ2 ∩ Λ3 = Λ , (3.7)

where Λ has generator matrix




4 0 0 0

2 2 0 0

2 0 2 0

2 0 0 2




, (3.8)
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and is another version of D4 on the scale at which its minimal norm is 8. The

group generated by the second matrix in (3.6) and diag[−1,+1,+1,+1] is a sym-

metric group S3 permuting the Λj; it is also a subgroup of Aut(Λ).

Barnes-Wall lattices. The preceding example can be generalized using or-

thogonal spreads. Let BWN (N = 2m, m = 1, 2, . . .) denote the N -dimensional

Barnes-Wall lattice ([34], [81], [82]). In particular, BW2
∼= (Z)2, BW4

∼= D4,

BW8
∼= E8. For N 6= 8, BWN is 2-modular, while as already mentioned BW8 is

1-modular.

It is known that the minimal vectors ofBWN may be partitioned into
∏m−1

j=1 (2j−

1) coordinate frames6, which are transitively permuted by symmetries ofAut(BWN ).

It follows that BWN can be written as the intersection of
∏m−1

j=1 (2j−1) copies

of (Z)N . In particular, E8 is the intersection of 15 copies of (Z)8. An explicit

method for constructing such an intersection for E8 is given below.

Intersections of smaller numbers of lattices are possible, although they are

less symmetric and therefore less satisfactory. For example in (3.7) it is also true

that Λ1 ∩ Λ2 = Λ ∼= D4. Similarly, E8 is (up to a similarity) the intersection of

2(Z)8 and the lattice (similar to 2(Z)8) with generator matrix:

6This is a consequence of the existence of an orthogonal spread in the orthogonal vector
space Ω+(2m, 2) of maximal Witt index ([21], [22], [81]).
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


1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 −1 0 0 1 −1 0 0
0 0 1 −1 0 0 1 −1
1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1
1 0 0 −1 0 1 −1 0
0 1 −1 0 1 0 0 −1




But this representation of E8 is in no way canonical, and the resulting hon-

eycomb does not have interesting properties.

Eisenstein and Hurwitzian lattices. Smaller intersections which are canon-

ical can be obtained if we change K from Z to A2 or D4. For example, the

minimal vectors of E8 can be partitioned into 10 copies of the minimal vectors

of (A2)
4. As in [34], let E = {a + bω : a, b ∈ Z}, ω = e2πi/3, denote the ring of

Eisenstein integers. The six units in E are ±1, ±ω, ±ω̄. When regarded as a two-

dimensional real lattice E is similar to A2. As an E-module7, E8 has generator

matrix 


θ 0 0 0

0 θ 0 0

1 1 1 0

0 1 −1 1




, where θ = ω − ω̄ . (3.9)

Inner products are computed using the Hermitian inner product 〈u, v〉 =
∑
uiv̄i.

See [34, Chapters 2 and 7] for further details. The minimal vectors consist of 24 of

7For definitions of modules and free modules, see for instance [124]
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the form [uθ, 0, 0, 0], where u is a unit in E , and 8×33 = 216 which are congruent

mod θ to one of the eight nonzero codewords of the tetracode [34, Chap. 3].

A partition of these 240 vectors into 10 copies of the minimal vectors of (A2)
4

was found by graph coloring. A graph was constructed with the 40 projectively

distinct8 vectors as nodes and with edges corresponding to pairs of non-orthogonal

vectors. A coloring with 10 colors was then found with the help of a program.The

ten copies of E4 ∼= (A2)
4 are shown in Table 3.2. Only one from each complex

θ 0 0 0 0 θ 0 0 0 0 θ 0 0 0 0 θ
0 1 −1 1 1 0 −1 −1 1 −1 0 1 1 1 1 0
0 1 −1 ω 1 0 −ω −ω̄ 1 −ω 0 ω̄ 1 ω ω 0
0 1 −ω ω 1 0 −ω −ω 1 −1 0 ω 1 1 ω 0
0 1 −ω ω̄ 1 0 −ω̄ −1 1 −ω 0 1 1 ω ω̄ 0
0 1 −ω 1 1 0 −1 −ω̄ 1 −ω̄ 0 ω̄ 1 ω̄ 1 0

Table 3.2: Decomposition of minimal vectors of E8 into ten copies of E4 ∼
= (A2)

4.
Each row generates a copy of E4 ∼

= (A2)
4. The complex conjugates of the last

four rows have been omitted.

conjugate pair is shown. By applying the Lemma we obtain a representation of

E8 as an intersection of 10 copies of (A2)
4. In fact (since E is itself 3-modular)

we may omit the final step of taking the duals of the lattices in Table 3.2. Let

Λ1, . . . ,Λ10 be the ten versions of (A2)
4 generated by the rows of Table 3.2 and

their complex conjugates. Then their intersection is easily seen to be the version

of E8 with generator matrix θ times (3.9). This decomposition is probably not

8Two vectors are projectively the same if one is an scalar times the other
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unique, and it would be nice to know which version has the largest symmetry

group.

Again just two lattices also suffice: E8 is also the intersection of the first two

lattices in Table 3.2.

We may also write E8 as the intersection of five copies of (D4)
2. For this

we regard E8 as a 2-dimensional module over the ring H ∼= D4 of Hurwitzian

quaternions [34, p. 55]. The five copies of (D4)
2 have generator matrices




1 + i 0

0 1 + i


 ,




1 1

1 −1


 ,




1 i

1 −i


 ,




1 j

1 −j


 ,




1 k

1 −k


 .

(3.10)

E∗
6 may be written as the intersection of four copies of (A2)

3, with generator

matrices




θ 0 0

0 θ 0

0 0 θ



,




1 1 1

1 ω ω̄

1 ω̄ ω



,




1 1 ω

1 ω 1

1 ω̄ ω̄



,




1 1 ω̄

1 ω ω

1 ω̄ 1



. (3.11)

This was found by partitioning the 72 minimal vectors of E6 (by hand) into four

copies of the minimal vectors of A3
2 and using the proposition 1.

Method 2: Congruence bases and norm-doubling maps. The second

method is based on the observation that several well-known lattices Λ have the
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property that for some prime π, the vectors in some of the classes of Λ/πΛ can be

partitioned into coordinate frames. For example, Conway’s proof of the unique-

ness of the Leech lattice Λ24 [34, Chap. 12] considers the classes of Λ24/2Λ24. A

consequence of the numerical identity

n0

1
+
n4

2
+
n6

2
+
n8

48
=

1

1
+

196560

2
+

16773120

2
+

398034000

48

= 16777216 = 224 , (3.12)

where nj is the number of vectors in Λ24 of norm j, is that, for the classes of

Λ24/2Λ24 in which the minimal norm is 8, the minimal vectors in the class form a

coordinate frame or congruence base. A similar property holds for the D4, E8, K12

and other lattices (cf. [32]). This gives a representation of Λ24 as an intersection

of 398034000/48 = 8292375 copies of (Z)24. However, the following argument,

due to J. H. Conway (personal communication), shows that if the lattice has a

suitable norm-doubling map (cf. [34, p. 239], [32]) then we can also partition the

minimal vectors into coordinate frames and obtain a smaller intersection.

Suppose that a lattice Λ ⊆ RN has the structure of a free module over a ring

J with inner product 〈 , 〉 (cf. [34, Chap. 2]). In the present application J will

be either Z or E . Let a = N/dimRJ
9. Consider the classes of Λ/2Λ. Suppose

there is an integer m with the property that each class either contains no vectors

9dimRJ is the dimension of J as a vector space over the reals
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of norm 2m, or else all the vectors of norm 2m in the class can be partitioned

into sets of 2a vectors ±v1, ±v2, . . . ,±va where 〈vi, vj〉 = 0 if i 6= j.

Suppose in addition there is a norm-doubling map T , a similarity from Λ

into Λ such that 〈Tu,Tu〉 = 2〈u,u〉 for u ∈ Λ, with the extra property that

2Λ ⊂ TΛ. Then we may conclude that the vectors of norm m in Λ may also be

partitioned into sets of 2a mutually orthogonal vectors.

To see this, let u ∈ Λ have norm m. Then v = Tu has norm 2m, and by the

hypotheses is part of a coordinate frame ±v1, . . .± va, where vi = v + 2wi, say,

with w1 = 0. We can write 2wi = T w′
i for some w′

i, so vi = T (u + w′
i). Since

T is a similarity, the set ±(u + w′
i) is a coordinate frame containing u.

Examples

(i) Λ = D4 or E8, J = Z, m = 2, T = direct sum of 2 or 4 copies of




1 1

1 −1


,

with T 2 = 2I. The classes of D4/2D4 and E8/2E8 and the associated congruence

bases are given in [34, Chap. 6]. The analogue of (3.12) for E8 reads

1 +
240

2
+

2160

16
= 28 .

94



We obtain decompositions of the minimal vectors of D4 into three coordinate

frames, as already seen in (3.6), and of the minimal vectors of E8 into 15 co-

ordinate frames as also discussed above. To get an explicit decomposition in

the latter case, note that a coordinate frame of norm 4 vectors has the form

Tu + 2wi = T (u + Twi). So the coordinate frame of norm 2 vectors consists

of the vectors of minimal norm in the translate u + T Λ. For E8 these consist of

seven sets of the form shown on the left in (3.13) and eight of the form shown on

the right:




+ 0 + 0 0 0 0 0
+ 0 − 0 0 0 0 0
0 + 0 + 0 0 0 0
0 + 0 − 0 0 0 0
0 0 0 0 + 0 + 0
0 0 0 0 + 0 − 0
0 0 0 0 0 + 0 +
0 0 0 0 0 + 0 −




,
1

2




+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+ + − − − − + +
+ − + − + − + −
+ − + − − + − +
+ − − + + − − +
+ − − + − + + −




.

(3.13)

Then E8 is also the intersection of the 15 copies of (Z)8 having these generator

matrices.

(ii) Λ = Leech lattice Λ24, J = Z, m = 4, T = (I + i), where i ∈ Aut(Λ24) is

given in [34, Fig. 6.7], and satisfies i2 = −I, with (I + i)(I− i) = T (I− i) = 2I.

The coordinates frames of norm 4 vectors consist of the 48 vectors of minimal

norm in the translates u+(I−i)Λ where 〈u,u〉 = 4. We obtain a decomposition
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of the minimal vectors of Λ24 into 4095 coordinate frames, and a representation

of Λ24 as the intersection of 4095 copies of (Z)24.

We do not know if it is possible to write the Leech lattice as the intersection

of 2730 copies of (A2)
12. Since 196560/96 is not an integer, there is no analogous

decomposition as an intersection of copies of (D4)
6.

(iii) Λ = Coxeter-Todd lattice K12, a 6-dimensional E-module, J = E , m = 6,

T = the map given in [32, Eq. (43)], with T 2 + T + 2 = 0. The classes of

K12/2K12 are given in [32], and the analogue of (3.12) reads

1 +
756

2
+

4032

1
+

20412

12
= 212 .

The coordinate frames of norm 6 vectors consist of the 12 minimal vectors in the

translates

u + (T + I)K12, 〈u,u〉 = 6. By combining these coordinate frames in sets

of three, by taking the union of the sets α{±v1, . . . ,±v12} with α = 1, ω and ω̄,

we obtain a decomposition of the minimal vectors of K12 into 21 copies of the

minimal vectors of (A2)
6, and, via the Lemma 3, a representation of K12 as the

intersection of 21 copies of (A2)
6. An explicit decomposition, not shown here,

was found by the graph coloring method mentioned earlier.

Suppose in addition that there is a norm-doubling map T , a similarity from

Λ into Λ such that (T u,Tu) = 2〈u,u〉 for u ∈ Λ, with the extra property that
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2Λ ⊂ TΛ. Then we may conclude that the vectors of norm m in Λ may also be

partitioned into sets of 2a mutually orthogonal vectors. To see this, let u ∈ Λ

have norm m. Then v = Tu has norm 2m, and by the hypotheses is part of a

coordinate frame ±v1, . . .± va, where vi = v + 2wi, say, with w1 = 0. We can

write 2wi = T w′
i for some w′

i, so vi = T (u + w′
i). Since T is a similarity, the

set ±(u + w′
i) is a coordinate frame containing u.

Method 3: First principles. If the above methods fail, as they do for the bcc

and fcc lattices, we can always fall back on a direct attack from first principles.

The following method handles the hexagonal, bcc and fcc lattices in a unified

manner. We list the vectors of small norms in the lattice, and look for a partition

of some subset of these vectors which produces a small number of congruent,

decomposable lattices whose intersection is similar to the original lattice.

For the hexagonal lattice, which we take to be generated by [0, 1] and [−
√

3
2
, 1

2
],

there are six vectors of norm 1, namely [0,±1], [±
√

3
2
,±1

2
], and six of norm 3,

namely [±
√

3, 0], [±
√

3
2
,±3

2
]. Then (3.2) is obtained by partitioning these 12

vectors into three sets of size 4.

For the bcc lattice generated by [1, 0, 0], [0, 1, 0], [ 1
2
, 1

2
, 1

2
], the vectors of small

norms are the following:
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shape norm number

0 0 0 0 1
1
2

1
2

1
2

3
4

8
1 0 0 1 6
1 1 0 2 12

We take the 18 vectors of norms 1 and 2 and partition them into three sets

of size 6. The resulting lattices have generator matrices




1 0 0

0 1 1

0 1 −1



,




0 1 0

1 0 1

1 0 −1



,




0 0 1

1 1 0

1 −1 0




(3.14)

and their intersection has generator matrix




2 0 0

0 2 0

1 1 1




, (3.15)

which is indeed another version of the bcc lattice10. This decomposition of the

bcc lattice is the simplest we have found.

For the fcc lattice generated by [1, 1, 0], [1,−1, 0], [0, 1,−1], the vectors of

small norms are:

10Strictly speaking, we obtain 2D∗

3
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shape norm number

0 0 0 0 1
1 1 0 2 12
2 0 0 4 6
2 1 1 6 24
2 2 0 8 12
3 1 0 10 24
2 2 2 12 8

The simplest intersection we have found is formed by taking the 32 vectors

of norms 6 and 12 and partitioning them into four sets of size 8. The resulting

lattices have generator matrices




2 1 1
1 2 −1

−2 2 2



 ,




1 2 1

−1 1 2
2 −2 2



 ,




1 1 2
2 −1 1
2 2 −2



 ,




2 −1 −1

−1 2 −1
2 2 2





(3.16)

and their intersection is the fcc lattice11 with generator matrix [3, 3, 0], [3,−3, 0],

[0, 3,−3].

Method 4: Using intersections of codes. A fourth method, which however

has not yet led to any interesting examples, is to reduce the problem to the

analogous question for codes. Let Λ(C) denote the lattice obtained by applying

11Strictly speaking, we obtain 3D3
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Construction A to a binary linear code C ([34, Chap. 5]). If C1, . . . , Cr are codes

of length N whose intersection is a code C, then

Λ(C) = Λ(C1) ∩ . . . ∩ Λ(Cr) .

This can be generalized to nonbinary codes [34, Chaps. 7, 8], in particular to the

case where the codes Ci are nonbinary codes whose intersection is binary.

3.4 Analysis of tesselations and Rate-Distortion

performance of Periodic Quantizers

As explained in Section 3.1, given a lattice decomposition of Λ as the intersection

of lattices Λ1, . . . ,Λr and given the choice we have taken in this chapter for each

individual quantizers QΛj , a periodic tesselation is induced. In order to make it

clear, we repeat that the choice that was made in Chapter 2 for each individ-

ual quantizer is different and results in different periodic tesselations than the

ones obtained in this chapter while keeping the same lattice decomposition. The

choice that is made in this chapter is expected to give rise to periodic quantizers

with better rate-distortion performance while in Chapter 2, the focus is on A/D

conversion related applications where 0 is never a reconstruction point.
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In this Section, we first obtain a general expression for the normalized (di-

mensionless) second moment associated with these periodic tesselations assuming

high-rate quantization and then, we study the tesselations for 4 particular exam-

ples, namely, those where the intersection lattices are A2 (see Fig. 3.1 and 3.2),

bcc, fcc, and D4.

Let the N -dimensional lattice Λ be the intersection of n-dimensional lattices

Λ1, . . . ,Λr. The intersections of the Voronoi cells for the Λi partition Rn into

a periodic tesselation. Let P1, . . . ,Pk be the k representatives for the different

polytopes or cells that appear in the periodic tesselation. It is important to note

that there exist also periodic tesselations which are not based on lattice intersec-

tions as the ones considered here which are purely geometrical. The periodicity

property has the advantage of allowing a formal and exact high-rate analysis

of the rate-distortion performance of these quantizers. The following theorem

gives the rate-distortion performance of any periodic quantizer, not necessarily

based on lattice intersections, in particular, it can be used to determine the rate-

distortion performance of all the periodic quantizers described in this chapter

and in Chapter 2. 2.

101



Theorem 4 At high rates, the distortion-rate function of an N-dimensional pe-

riodic quantizer applied to a source X is given by:

D(R) = G22h(X)2−2R, G =

∑k
i=1

piUi

Vi

N
(∏k

i=1 V
pi

i

) 2

N

, (3.17)

where the minimal periodic unit of the tesselation has k distinct polytopes {P1,

. . . , Pk}, Vi is the volume of the i-th cell, Ui is the unnormalized mean squared

error of the i-th cell, h(X) is the differential entropy of X per dimension and

pi = prob(X ∈ Pi).

Proof: See Appendix B.2

Note that when there is only one kind of cell (3.17) reduces to the familiar

formula

G =
U

NV 1+ 2

N

(3.18)

for a lattice quantizer ([31], [34], [55]).

Incidentally, a different expression from (3.17) for the figure of merit was used

in a recent paper of Kashyap and Neuhoff [72]. Defining the rate of the quantizer

in a different way, results in a different expression in the denominator. However,

we believe our formula gives a fairer comparison because the assumptions made

in [72] are more restrictive than the ones we make in Theorem 4.
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We next describe how the cells of the tesselations were found. This was not

included in Chapter 2 because most of the designs that were provided there were

in R2, hence, the cells of the tesselation could be found very easily. In this

Chapter, we need to use different geometry rules and methods to make sure that

the correct tesselation is found.

Many cells could be found by elementary geometrical reasoning. But in com-

plicated cases we carried out some or all of the following steps:

1. To find the cell containing a point x ∈ R3 or R4 we first quantized x using

each of the lattices Λj in turn. For each Λj, we determined the Voronoi

cell Ci containing x, or, more precisely, the equations of the hyperplanes

bounding Ci.

2. Linear programming (in MATLAB) was then used to determine the vertices

of the cell containing x. We let w range over a set of 130 points on a sphere

centered at x (taken from the tables of spherical codes in [64]), and, for

each w, we maximized the inner product 〈w, z〉 subject to the constraints

that z lie in the polytope formed by the intersection of all the hyperplanes

found in (i). Any such solution z is a vertex of the cell, and since the w’s

are essentially random, the 130 solutions should include all the vertices of

the cell.
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3. The convex hull program QHULL [5], [1] was used to find the convex hull

of these vertices. At this point we have candidates for all the cells in the

honeycomb. Since it is theoretically possible (although unlikely) that step

(i) might have failed to find all the vertices of a cell, we also verify by hand

that the cells fit together to form a proper tiling of the space by checking

if the sum of the volumes of the polytopes in the minimal unit is equal to

the volume of the minimal unit given by the Voronoi cell of the intersection

lattice Λ centered at 0. Let V = det(MΛ) be the volume of a fundamental

region or Voronoi cell for Λ and ni be the number of cells of type Pi with

volume Vi that are contained in each Voronoi cell of Λ. Then, we check the

volume equation:

V = n1V1 + . . .+ nkVk . (3.19)

4. The XGobi program [104] for displaying multi-dimensional data was used

to help visualize the cells and their neighbors.

To compute the volumes and second moments of the cells we decomposed the

cells into simplices and used the formulae in [31] and [34, Chap. 21].

We now begin our study of the periodic tesselations formed by some of the

intersections described in Section 3.3. In order to represent the tesselations in a

compact way, we use an undirected graph where each node is represented by a

circle, as shown in Fig. 3.3. A circle containing i refers to a cell of type Pi, and
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ts
i j

Figure 3.3: Undirected graph representing the incidence between cells Pi and Pj

an edge between i and j indicates that Pi and Pj share a common face of the

maximal dimension (here 1), and the edge labels indicate that each Pi is adjacent

to s cells of type Pj and each Pj to t cells of type Pi.

3.4.1 The hexagonal lattice as an intersection of three

lattices

The hexagonal lattice is the intersection of the three rectangular lattices given

by (3.2), as in Fig. 3.1. The periodic tesselation is shown in Fig. 3.2. We now

compute the mean squared error for this quantizer.

There are four types of cells. The origin is contained in a hexagon P1 (hor-

izontally shaded in Fig. 3.2) of edge length 1/
√

3, area V1 =
√

3/2 and second

moment U1 = 5
√

3/72. The second type of cell is a small equilateral triangle

P2 (cross-hatched), with V2 =
√

3/12, U2 =
√

3/432. P3 is an isosceles triangle

(diagonally shaded), with V3 =
√

3/12, U3 = 5
√

3/1296. The fourth type, P4, is

a larger equilateral triangle (vertically shaded), with V4 =
√

3/4, U4 =
√

3/48.

6 1 2
2

312
1 3 4

Figure 3.4: Incidences between cells in periodic tesselation for hexagonal lattice.
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The incidences between the different types of cells are shown in Fig. 3.4.

The Voronoi cell V for the intersection lattice is enclosed by the broken lines in

Fig. 3.2. In the notation of Section 3.4, V contains n1 = 1 copy of P1, n2 = 6

copies of P2, n3 = 6 copies of P3 and n4 = 6× 1
3

= 2 copies of P4, and the volume

equation (3.19) reads

2
√

3 =

√
3

2
+

√
3

2
+

√
3

2
+

√
3

2
. (3.20)

Thus the probabilities p1, . . . , p4 of a randomly chosen point in the plane be-

longing to a cell of each type are all equal to 1/4. From (3.17), the normalized

mean squared error for this quantizer is G = 27/4/27 = 0.1246 . . . This value is

considerably worse than the value 0.080188 . . . for the hexagonal lattice itself.

3.4.2 The bcc lattice as an intersection of three lattices

The bcc lattice is the intersection of the three “rectangular” lattices Λ1,Λ2,Λ3

defined in (3.14). Each Λj is congruent to Z ×
√

2Z×
√

2Z, and has as Voronoi

cell a brick with square cross-section. There is an obvious symmetric group S3

that permutes the Λj.

Again the periodic tesselation contains four types of cells. The origin is con-

tained in the intersection of the Voronoi cells at 0 for the three Λi. This is a

cube, P1, with vertices (±1/2,±1/2,±1/2), volume V1 = 1, and second moment
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U1 = 1/4. Across each square face of P1 is a square pyramid P2, such as that with

base [1/2,±1/2,±1/2], apex [1, 0, 0], V2 = 1/6, U2 = 11/600. Across each trian-

gular face of P2 is a tetrahedron P3, such as that with vertices [1/2,±1/2, 1/2],

[1, 0, 0], [1, 0, 1/2], V3 = 1/24, U3 = 1/512. Finally, across the other three faces

of P3 we reach a fourth type of cell, P4, a quarter-octahedron, which occurs in

two orientations, one having vertices such as

[
1

2
, 0,

1

2

]
,

[
1

2
, 0, 1

]
,

[
1, 0,

1

2

]
, [1, 0, 1],

[
1

2
,±1

2
,
1

2

]
, (3.21)

the other having vertices such as

[
1,

1

2
,
1

2

]
,

[
1, 0,

1

2

]
,

[
1,

1

2
, 0

]
, [1, 0, 0],

[
1

2
,
1

2
,
1

2

]
,

[
3

2
,
1

2

1

2

]
. (3.22)

These may be described as quarters of squat octahedra. E.g., (3.21) is a quarter

of the octahedron with vertices [±1, 0,±1], [1/2,±1/2, 1/2]. For P4 we have

V4 = 1/12, U4 = 1/192.

No further types of cell appear: every face of either version of P4 leads to a

P3. The incidence diagram is shown in Fig. 3.5.

6 1 4 1 3 61 2 3 4

Figure 3.5: Incidences between cells for periodic tesselation for bcc lattice.
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The Voronoi cell V for the intersection lattice is a truncated octahedron with

24 vertices [0,±1/2,±1]. This contains n1 = 1 copy of P1, n2 = 6 copies of

P2 and n3 = 24 copies of P3. The cells of type P4 partially overlap V. There

are 12 of type (3.21), intersecting V in a tetrahedron such as that with vertices

[1/2,±1/2, 1/2], [1/2, 0, 1], [1, 0, 1/2], with volume 1/24. There are also 24 of type

(3.22), intersecting V in a tetrahedron such as [1/2, 1/2, 1/2], [1, 0, 0], [1, 0, 1/2],

[1, 1/2, 0], with volume 1/48. The volume equation (3.19) reads

4 = 1× 1 + 6× 1

6
+ 24× 1

24
+ 12× 1

24
+ 24× 1

48

= 1 + 1 + 1 + 1 , (3.23)

so again the probabilities pi of a randomly chosen point belonging to a cell of

given type are all equal to 1/4. The normalized mean squared error is

G =
751

√
3

9600
= 0.1355 . . .
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22

1

2

1
2

61

9

76

4

1

122

1

2

1

1 3

2

2

4

2

2

4

3

1

24

1

3

1

2

2

1

12118 10

5

2

1

43

Figure 3.6: Incidences among cells of fcc periodic tesselation.

3.4.3 The fcc lattice as an intersection of four lattices

The fcc lattice is the intersection of the four lattices Λ1, . . . ,Λ4 defined in (3.16).

Each of these has Gram matrix equivalent to




6 −3 0

−3 6 0

0 0 12



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and is a direct sum
√

3A2 ⊕
√

12Z, with Voronoi cell a hexagonal prism. The Λj

look more symmetrical if they are written in the coordinates used to describe the

root lattice A3 (∼= D3), that is, using four coordinates that add to 0. Then Λ1

has generator matrix 


0 2 −1 −1

0 −1 2 −1

3 −1 −1 −1




and the others are given by cyclic shifts of these columns. This shows that

there is a symmetric group S4 permuting the Λj. However, the three-dimensional

coordinates given in (3.16) are more convenient for computations.

This periodic tesselation is the most complicated we have analyzed and we

shall give only a brief description. There are twelve types of cells, P1, . . . ,P12,

whose parameters are summarized in Table 3.3 and whose incidences are shown

in Fig. 3.6. Fig. 3.7 and 3.8 shows cross-sections through the periodic tesselation

along the planes z = 0 and z = 0.35.

The following is a brief description of the cells, including coordinates for one

cell of each type.

P1. Obtained from cube by pushing in corners and pulling out edge midpoints.

Vertices: all cyclic shifts and sign changes of [3/2, 0, 0], [1, 1, 0], [3/4, 3/4, 3/4].

P2. Pyramid with kite-shaped base. Base: [3/2, 0, 0], [1, 1, 0], [1, 0, 1], [3/4, 3/4,

3/4], apex: [3/2, 1/2, 1/2].
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i v e f ni Vi pi Ui

1 26 48 24 1 9 1/6 1449/160
2 5 8 5 24 1/8 1/18 41/3200
3 6 12 8 24 1/4 1/9 9/320
4 5 8 5 24 1/8 1/18 41/3200
5 5 9 6 24 1/10 2/45 427/50000
6 4 6 4 48 1/40 1/45 443/320000
7 10 18 10 8 27/40 1/10 41013/160000
8 6 12 8 6 1 1/9 47/180
9 5 9 6 8 3/8 1/18 189/3200
10 4 6 4 24 1/40 1/90 1897/1280000
11 5 8 5 24 3/40 1/30 2319/400000
12 22 36 16 2 63/10 7/30 213597/40000

Table 3.3: The twelve types of cells in the fcc case, showing numbers of vertices,
edges, faces (v, e, f), the number per fcc cell (ni), and their volumes, probabilities
and second moments(Vi, pi, Ui).

P3. Irregular octahedron with vertices [3/2, 0, 0], [3/2, 3/2, 0], [1, 1, 0], [2, 1, 0],

[3/2, 1/2,±1/2].

P4. Congruent to P2. Vertices: [3/2, 0, 0], [3/4, 3/4, 3/4], [3/2, 1/2, 1/2], [1/2,

3/2, 1/2], [1, 1, 0].

P5. Irregular polyhedron with six faces. Vertices: [3/2, 0, 0], [2, 1, 0], [2, 0, 1],

[9/5, 3/5, 3/5], [3/2, 1/2, 1/2].

P6. Tetrahedron: [2, 1, 0], [3/2, 3/2, 0], [3/2, 1/2, 1/2], [9/5, 3/5, 3/5].

P7. “Flying saucer”: hexagonal base (cyclic shifts of [3/2, 3/2, 0] and [9/5,

3/5, 3/5]) with four vertices above it (cyclic shifts of [3/2, 1/2, 1/2] and [3/4, 3/4,

3/4] at apex).

P8. Irregular octahedron with vertices [2,±1, 0], [2, 0,±1], [3/2, 0, 0], [3, 0, 0].
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Figure 3.7: Cross-section of the periodic tesselationf for the fcc case along plane
z = 0 (−3 ≤ x ≤ 9, −6 ≤ y ≤ 6), with origin at center of octagon on left. Only
three cells are visible: P1 (octagon), P2 (small kite), P9 (large dart).

P9. Regular tetrahedron (vertices [2, 1, 0], [2, 0, 1], [3, 0, 0], [3, 1, 1]) with tri-

angular cap (apex [9/4, 3/4, 3/4]) on one face.

P10. Irregular tetrahedron with vertices [2, 1, 0], [2, 0, 1], [9/4, 3/4, 3/4], [9/5,

3/5, 3/5].

P11. Another pyramid with kite-shaped base. Base: [3/2, 3/2, 0], [9/4, 3/4,

3/4], [9/5, 3/5, 3/5], [12/5, 6/5, 3/5], apex: [2, 1, 0].

P12. See Fig. 3.9. Has 26 vertices, four hexagonal and 12 kite-shaped faces.

Vertices are all permutations of [3/2, 3/2, 0], [3/2, 3/2, 3], [9/4, 3/4, 3/4], [9/4, 9/4,

9/4], [9/5, 3/5, 3/5], [12/5, 9/5, 9/5], [12/5, 6/5, 3/5].

If we decompose R3 into Voronoi cells for the intersection lattice Λ (3.20),

just three of the twelve types of cells are cut by the boundary walls. Cells of type
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Figure 3.8: Cross-section through the periodic tesselation for the fcc case along
plane z = 0.35. Cross-sections of all 12 types of cells can be seen.

P9 are cut into three equal pieces, cells of type P11 are cut in half, and cells of

type P12 are cut into four equal ice-cream cone shaped pieces. The base of each

cone is at the center of P12, and the top contains one of the hexagons and parts

of the neighboring faces.

The normalized mean squared error is

G =
12269777

816480000
328/135 58/27 738/45 = 0.1572 . . . .

3.4.4 TheD4 lattice as an intersection of three cubic lattices

The three cubic lattices Λ1, Λ2, Λ3 are defined in (3.5) and their intersection

Λ ∼= D4 in (3.6). There are just four types of cells, P1, P2, P3, P4, whose
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Figure 3.9: 26-vertex cell P12.

properties are summarized in Table 3.4 and whose intersections are shown in

Fig. 3.10. We use coordinates [a, b, c, d] for points in R4.

i v f ni Vi pi Ui

1 24 24 1 8 1/4 104/15
2 7 9 24 1/3 1/4 8/105
3 5 5 96 1/12 1/4 11/900
4 6 9 32 1/4 1/4 1/20

Table 3.4: Cells in periodic tesselation for the D4 case, showing numbers of
vertices and 3-dimensional faces (v, f), the number per D4 cell (ni) and their
volumes, probabilities and second moments (Vi, pi, Ui).
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24 1 2
2

938
1 3 4

Figure 3.10: Incidences among cells of D4 honeycomb.

P1 is the 4-dimensional regular polytope known as a 24-cell ([34], [37]). The

Voronoi cells for Λ1, Λ2, Λ3 at the origin are all cubes, whose intersection is

bounded by the hyperplanes

|a| ≤ 1, |b| ≤ 1, |c| ≤ 1, |d| ≤ 1, |a|+ |b|+ |c|+ |d| ≤ 1,

which is the 24-cell with vertices of the form [±1,±1, 0, 0].

Across each of the 24 octahedral faces of P1 we reach an octahedral-based

pyramid P2, such as that with vertices [1,±1, 0, 0], [1, 0,±1, 0], [1, 0, 0,±1] and

[2, 0, 0, 0] (the apex).

There are eight other faces of P2, regular tetrahedra; these lead to copies of

P3, which is an irregular simplex such as that with vertices [1, 1, 0, 0], [1, 0, 1, 0],

[1, 0, 0, 1], [2, 0, 0, 0], [1, 1, 1, 1].

Finally, three of the five faces of each P3 lead to cells of the fourth type, P4.

This can best be described as the product of two skew equilateral triangles of

different sizes (just as a tetrahedron in three dimensions is the product of two

skew line segments). Take an equilateral triangle with vertices p = [2, 1, 1, 0], q =

[1, 1, 0, 0], r = [1, 0, 1, 0] and another with vertices P = [2, 0, 0, 0], Q = [1, 1, 1, 1],
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R = [1, 1, 1,−1]. Then P4 is their convex hull. There are nine tetrahedral faces

given by the convex hull of an edge of the first triangle and an edge of the second

triangle.

If we decompose R4 into Voronoi cells for the intersection lattice, only cells

of type P4 are cut by the boundary walls. Each P4 is divided into three equal

pieces, a typical piece being an “ice-cream cone” whose center is at the center

of P4 and whose three-dimensional face is the convex hull of the second triangle

(P,Q,R) and any edge of the first triangle.

The volume equation (3.19) then reads

32 = 1× 8 + 24× 1

3
+ 96× 1

12
+ 96× 1

4
× 1

3
.

Again a random point is equally likely to fall into a cell of any of the four types.

The normalized mean squared error is

G =
757

8400
21/8 31/4 = 0.1293 . . . .

3.5 Conclusions and comments

The basic results presented in this chapter are as follows. We fist study general

methods in order to write a good lattice Λ as the intersection of a set of simple
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lattices Λ1, . . . ,Λr. Then, we obtain concrete decompositions for the cases where

Λ = A2, A
∗
3 (bcc), A3 (fcc), D4, E

∗
6 , E8, K12,Λ24 (Leech), BWN (Barnes-Wall).

Then, we derive a formula that characterizes the rate-distortion performance

of any periodic periodic quantizers in terms of a generalized normalized second

moment G. Next, we study in full detail the tesselations that are obtained for the

given constructions in the cases where Λ = A2, A
∗
3 (bcc), A3 (fcc), D4, showing all

the cells of the tesselations and their incidences and calculating the corresponding

values of G.

In each of the honeycombs of Sections 3.4.1, 3.4.2 and 3.4.4 just four types

of cells occurred. This is easily explained in the case of the D4 honeycomb:

there are three equivalent lattices Λ1, Λ2, Λ3, and the associated quantizers are

essentially making binary decisions about the location of a point with respect

to the intersection lattice. So the space is divided up into regions that can be

labeled 000, 001, 011 and 111.

This argument does not quite apply to the A2 or bcc honeycombs, since there

the individual lattices themselves are not fully symmetric (rectangular rather

than square in the A2 case, for instance). So it is fortuitous that only four cells

occur. In contrast, the fcc honeycomb shows that the number of cells can increase

rapidly in less fortunate cases with more component lattices.
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From a rate-distortion point of view, as for practical quantization related

applications, further research needs to be done in order to find competitive quan-

tizers. On the one hand, it is possible that better quantizers could be obtained

by amalgamating (merging) less symmetrical cells. For example, in Fig. 3.2, the

diagonally and vertically shaded triangles could be amalgamated to give a hon-

eycomb made up of regular hexagons and equilateral triangles with the same

edge length as the hexagons. The new honeycomb will have larger absolute error

but a smaller normalized error G. We did not investigate this possibility for the

different lattice decompositions we have obtained. On the other hand, another

interesting topic for future research is the design of quantizers by taking a sim-

ple initial lattice Λ1 and combining it with several other lattices which are both

rotations and translations of Λ1.

From a complexity point of view, it is interesting to mention that in some

cases, specially when the number of simple lattices that constitute the decompo-

sition of a complicated lattice is small, it is faster to compute (QΛ1 , QΛ2 , . . . , QΛr)

than QΛ. On the other hand, the constructions presented here are still useful for

quantizing overcomplete expansions in RN .
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Chapter 4

Oversampled Steerable Transforms:

Quantization and

Rotation Invariance∗

4.1 Introduction and Motivation

Feature detection and extraction is a very important step in several applications

(e.g., classification, content based retrieval, image understanding systems, etc...)

where features of interest should be preserved in the representation that is used.

For instance, consider the application of content-based access to databases con-

taining large amounts of multimedia data, where text-based indexing is not suffi-

cient. The images in a database are normally compressed using either a DCT or

a (orthogonal or biorthogonal) wavelet based algorithm, because of their critical

∗The publications related to this chapter are [9, 88, 13, 14].
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sampling as opposed to overcomplete decompositions. Orthogonal and biorthogo-

nal critically sampled transforms, like all of the linear transforms commonly used

in image compression, have important drawbacks in the representation they give

rise to: a) lack of shift and rotation invariance because the representation is highly

dependent on the relative alignment of the image and the subsampling lattices

b) the selectivity in orientation is limited, e.g., all the 2D filters which are built

from the outer product of 1D filters, can only only detect energy (information)

in three orientations: horizontal (0 degrees), vertical (90 degrees) and diagonals

(45 and 135 degrees), as shown in Fig. 4.1. Although it is possible to increase

Figure 4.1: Set of 2D filters obtained from the 1D Daubechies orthogonal filter
bank ’daub3’

the directionality while keeping critical sampling by using some alternative filter

designs [3, 4] which are not based on outer products, the critical sampling in

these transforms makes it impossible to achieve shift or rotation invariance. The

main goal in our work is to achieve rotation invariance in the context of a content

based image retrieval application. Any typical content based retrieval system

consists of two main tasks, a texture extraction process and a similarity mea-

surement scheme. Most texture extraction methods for retrieval consist of first
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Figure 4.2: Rotation-Invariance in remote content based image retrieval

filtering the signal with some filter banks and then measuring the energies (pos-

sibly weighted) of the corresponding output subbands as the extracted features.

Consider the problem illustrated in Fig. 4.2 where a satellite is capturing images

which may be rotated versions of images already present in the image database

on the earth. Bandwidth and power are very limited for the satellite and this

means that it should be avoided as much as possible sending images to the earth

which are unnecessary, that is, which belong to a class for which the database

has already samples of it. In the context of content based image retrieval, this

would be an example of a query search by example. Instead of sending images in

a continuous manner, a set of representative features describing the new image

are first obtained and transmitted (after being quantized) to the earth. On the
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earth, some similarity measurement is performed between these features and the

features of the images contained in our database. Suppose that the new image

is a rotated version of an image already present in the database. In this case, it

is required to perform an alignment between the features of the 2 textures being

compared. In order to perform this alignment, we need to define a set of fea-

tures which can be somehow rotated as we rotate the underlying image. We call

this kind of features “steerable” features. As it is shown in this chapter, these

desirable steerable features can be only defined using an oversampled filter bank

system called steerable filter bank.

As it is illustrated in the example given by Fig. 4.2, a set of useful features

for discrimination purposes in images can be obtained by detecting information

of an image in different orientations. A brute-force and very inefficient approach

to do this would be to use a large set of filters, each being oriented in a different

direction. Designing all these filters is not necessary if filters steerable under

rotation are available. A filter is called steerable under some transformation Lie

group (e.g. translation, rotation, scaling, etc...) if transformed versions of this

filter can always be expressed as a linear combination of a fixed, finite set of

basis filters. For the particular case of steerability under rotation, a set of basis

filters can be applied to an image and since convolution is linear, we can calculate

exactly, by linearly combining these basic responses, the filtering of that image

at an arbitrary orientation, without explicitly designing and applying different
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filters for each of the desired orientations. This has been proved to be very useful

in many different vision and image processing tasks, such as segmentation or

texture analysis [52, 101]. This powerful representation turns out to be necessarily

redundant or overcomplete.

The similarity measurement usually consists of some norm-based distance

calculated in the feature space. Since we want to achieve rotation-invariance, we

need to extract features which are steerable in the sense that given two rotated

versions of the same image, the features from one version can be mapped to the

other version in a simple way. As we show in this chapter, in order to extract

features having this property, it is necessary to use a steerable transform which is

an overcomplete representation and a regular wavelet transform is not adequate.

On the other hand, notice also that in the context of feature extraction over

many different compressed images, if we were using a critically sampled transform,

we first would have to decompress each image and then, we would have to apply

a steerable transform to the decompressed image. Using directly a steerable

transform to code the images, we can extract all these many different features

directly in the transformed domain. Therefore, in cases where many different

features have to be extracted and very multi-purpose and detailed image queries

are needed, critically sampled transforms may not be the best option because they

would involve a high time complexity due to the large number of decompression

operations that would have to be performed.
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Given this requirement, one of the problems that we study in this chapter is

how to achieve as much compression efficieny as possible using these oversampled

steerable representations. Second, we study in detail how to solve the problem

of rotation invariance using energy-related features measured from the steerable

transform subbands. We focus our study on transforms which are steerable under

rotation although some of the theory we introduce is also valid for any transfor-

mation Lie group. We analyze angular oversampling (e.g. increasing the number

of orientations) in the context of steerable transforms which have not considered

by prior research and explore techniques to represent efficiently this oversam-

pled data. The angular oversampling or oversteering is also motivated because

it allows us to establish some “consistency” constraints [39, 60, 84, 111] on the

coefficients of a steerable representation with many orientations (oversteered rep-

resentation), which reduces the amount of information lost in the quantization

process and thus, an increase in oversampling, results in an increase of the accu-

racy and resolution of the corresponding transform coefficients.

In Section 4.2 we first provide a complete review of the basic concepts, proper-

ties and construction of functions which are steerable under a Lie Transformation

group, focusing on the fundamental concepts of basis functions, steering functions,

equivariant spaces, interpolation equation, infinitesimal generator and tangent

space, which, as illustrated in Section 4.2.1 and Section 4.2.2 provides a gen-

eral method for constructing 1D equivariant function spaces for the 1-parameter
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translation group, using simple linear algebra, which is the basis to construct a

2D digital filter bank which is steerable under rotation.

Next, we explain our different approaches in order to represent the oversam-

pled data, placing an emphasis on how to decrease the error on the transform

coefficients after quantization has taken place when the number of orientations

that are used is increased. In Section 4.4.1, we show that increasing the number

of orientations results in a better energy compaction in angle. In Section 4.4.2, we

describe two methods which reduce the quantization error in the transform coef-

ficients by establishing two “consistency” constraints, one due to the smoothness

(steerability) constraints on the steerable curve linking all the angular coefficients

of all the subbands and another one due to the quantization itself. We explain

two ways of using these two consistency constraints, one based on projection on

convex sets (POCS) and another one based on calculating regions of uncertainty,

and provide some experimental results supporting our approach.

Then, in Section 4.5 we concentrate on the problem of rotation invariance in

the context of content-based image retrieval. We propose a steerable transform

that serves as a basis for an image retrieval system which can recognize the situ-

ation where the query image is a rotated version of some image already present

in the database. In order to achieve this goal, we define some steerable features

which make use of correlations between different orientations within each level in

addition to the energy in each orientation. Our similarity measurement basically
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aims at aligning the features between two different textures by rotating the fea-

tures so that if two texture samples are rotated versions of the same texture class,

the distance, after the alignment, is as small as possible and thus, the equivalence

between two samples of the same texture can be recognized. Several experiments

are shown illustrating our proposed similarity measurement using steerable fea-

tures. We also compare our results with those obtained using a wavelet pyramid.

4.2 Review of basic Definitions, Properties and

Construction of Steerable transforms

The original definition of steerability was proposed by Freeman and Adelson [52]

for the particular case of rotation. Simoncelli et al. [100] extended this defini-

tion to include translation and scaling and later Perona [89, 90] used the term

“deformable” to refer to functions which are steerable under arbitrary compact

transformations. Since most of the typical transformations encountered in signal

processing (e.g., translation, rotation, scaling) are Lie transformation groups, we

consider only Lie groups.

In this section, we provide a complete overview of the general formulation for

the construction of steerable functions based on Lie Theory. The main reason

for which we use a Lie Theory formulation is that the derivation of steerable
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functions is much clearer, simpler and much more elegant than all the previous

formulations provided in [52, 100, 89, 90].

Definition 15 A family of transformations {g(τ1, τ2, . . . , τk)} parameterized by

τ1, . . . , τk over some predefined range and acting on the coordinates of a (not

necessarily real) function f(x) : RN 7→ C is a Lie group G if the following

properties are satisfied: (1) it satisfies the algebraic group conditions of closure

under composition, associativity and the existence of an inverse and identity, and

(2) the maps for inverse and composition are smooth (infinitely differentiable).

For instance, for a 2D function f(x1, x2), a well known family of transformations

is given by the 1-parameter group of rotations gR(τ) in the plane such that

gR(τ) f(x1, x2) = f(x1 cos(τ) − x2 sin(τ), x1 sin(τ) + x2 cos(τ)). Notice that a

transformation group implies a coordinate transformation x′i = sτ (xi) for each of

the coordinates. In the previous example, for instance, x′1 = x1 cos(τ)−x2 sin(τ).

Another familiar example is the 2-parameter translations, that is, gtx1
,tx2

(τ1, τ2)

f(x1, x2) = f(x1− τ1, x2− τ2). The mathematical treatment of Lie theory in this

chapter is rather limited, that is, we only present the necessary concepts. For a

much more detailed exposition of Lie theory, see the numerous books about the

subject [28, 15, 23, 69, 95, 73, 75, 106, 86].

Next, we give a general definition of steerable function which includes any Lie

transformation group. This definition is adapted from [67, 68].
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Definition 16 A function f(x) : RN 7→ C is steerable under a k-parameter Lie

transformation group G if any transformation g(τ ) ∈ G of f(x) can be written

as a linear combination of a fixed, finite sef of basis functions {ψi(x)}J
i=1:

g(τ ) f(x) =

J∑

i=1

αi(τ )ψi(x) = αT (τ )Ψ(x) (4.1)

where Ψ(x) = [ψ1(x), ψ2(x), . . . , ψJ(x)]T , the vector τ = [τ1, τ2, . . ., τk]
T parame-

terizes the family of transformations in the group G, the vector α = [α1(τ ), α2(τ ),

. . . , αJ(τ )] contains the set of steering functions and the vector Ψ(x) contains

the basis functions.

The steering functions {αi(τ )}J
i=1 depend only on the k transformation param-

eters {τi}k
i=1 and are unique given a particular function f(x) and the particular

set of basis functions Ψ that is needed to steer f(x). It is clear that for a given

function f(x), the set of basis functions is not unique because any (non-singular)

linear transformation of the set of basis functions could also be used. Let us

assume that J is the minimum number of basis functions required and theferore,

that the set of functions {ψi(x)}J
i=1 are linearly independent. It is also important

to mention that not all functions can be analytically steerable, that is, they may

require an infinite number of basis functions2.

2In this case, the goal is, for a given k, to find the best set of k basis functions which give
the minimum error in achieving exact steerability [110].
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As a simple illustrative example, consider the 2D function f(x1, x2) (e.g. x =

[x1, x2]) given by the first x1-derivative G′
x1

(x1, x2) of a 2D gaussian G(x1, x2) =

e−(x2
1
+x2

2
). G′

x1
(x1, x2) = −2x1e

−(x2
1
+x2

2
) is steerable under the one-parameter

group of rotations where the set of basis functions is given by Ψ(x1, x2) =

[G′
x1

(x1, x2), G
′
x2

(x1, x2)]
T and the set of steering functions is simply α(τ) =

[cos(τ), sin(τ)]T . Thus, we have that G′
τ (x1, x2) = g(τ) G′

x1
(x1, x2) = cos(τ)

G′
x1

(x1, x2) + sin(τ)G′
x2

(x1, x2), that is, the directional derivative on the plane

along the direction corresponding to an angle τ , can be obtained through a linear

combination of the derivatives along 0 (x1-derivative) and 90 (x2-derivative) de-

grees. Notice that if we choose any two angles τ1 and τ2 (τ1 6= τ2), we can express

both ψ1(x1, x2) = G′
x1

(x1, x2) and ψ2(x1, x2) = G′
x2

(x1, x2) as follows:




ψ1(x1, x2)

ψ2(x1, x2)


 =




G′
x1

(x1, x2)

G′
x2

(x1, x2)


 =




cos(τ1) sin(τ1)

cos(τ2) sin(τ2)




−1


G′
τ1

(x1, x2)

G′
τ2

(x1, x2)




(4.2)

Since G′
τ1

(x1, x2) and G′
τ2

(x1, x2) are themselves steerable with steering functions

G′
x1

(x1, x2) and G′
x2

(x1, x2), this implies directly that each basis function is itself

steerable with the same set of basis functions although with different steering

functions. Since this is always true in general and in both directions, it makes

more sense to define equivalently the concept of steerability in terms of the func-

tion space spanned by the basis functions {ψi(x)}.
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Definition 17 An N-dimensional function space V = span{ψ1(x), . . . , ψJ(x)}

is equivariant under a Lie transformation group G if every ψi(x) is steerable with

respect to the basis functions {ψ1(x), . . . , ψJ(x)}, that is, there exists a matrix

function A(τ ) (interpolation matrix) such that the following interpolation equa-

tion holds:

g(τ ) Ψ(x) = A(τ )Ψ(x) ∀ g(τ ) ∈ G (4.3)

For the previous example, the two-dimensional function space V = span{G′
x(x, y),

G′
y(x, y)} is equivariant and the interpolation matrix A(θ) is just a pure rotation

matrix. The equivariance property means that the function space V is invariant

(satisfies closure) under the associated transformation group G and a function

f(x) is steerable under a k-parameter transformation group if and only if it be-

longs to some function space which is equivariant under the same transformation

group. Notice that any function f(x) ∈ V with f(x) =
∑

i biψi(x) = bTΨ(x) is

steerable with the same set of basis functions {ψi(x)}:

g(τ ) f(x) = g(τ ) (bTΨ(x)) = bTg(τ ) Ψ(x) = bT A(τ )Ψ(x) (4.4)

and with steering functions given by α(τ ) = AT (τ )b.
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4.2.1 Construction of 1D equivariant function spaces for

1-parameter transformation groups

In our work we make use only of steerability under a 1-parameter transformation

group, in particular, the rotation group with parameter being a rotation angle in

the Fourier domain and acting on a 1D function f(φ). Thus, in the sequel, we will

denote our basic coordinate by φ instead of x = x1. It can be shown that there

exists always a change of coordinates such that any 1-parameter transformation

group becomes a translation group in the new parameterization [28], thus, it is

enough to consider the translation group with parameter φ. In our case, the ro-

tation group, changing from cartesian coordinates to polar coordenates, reduces

the problem to considering the translation group with parameter φ. The con-

struction of equivariant function spaces is crucial in order to find functions which

are steerable. The most elegant and simple way to construct equivariant function

spaces is by using the concept of tangent space of a Lie group because it allows

us to use simple linear Algebra as shown next.

Definition 18 Given a 1-parameter trasformation group G which implies a co-

ordinate transformation φ′ = sτ (φ), the infinitesimal generator of the transfor-

mation group L is defined by the differential operator:

L =
∂x′

∂τ

∂

∂φ


τ=0

(4.5)
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The tangent space Ω of the group G is defined as the set Ω = {τL | τ ∈ R}

which can be viewed as a one-dimensional linear vector space with L being a

one-dimensional basis vector. The crucial connection between the Lie group and

the tangent space is that each element g(τ) in G is related to an element in Ω

through an exponential map, namely:

g(τ) f(φ) = eτLf(φ) =

(
I + τL +

1

2!
τ 2L2 + · · ·

)
f(φ) (4.6)

where τ is the parameter of the transformation group and eτL represents an

infinite sum of differential operators (series expansion) [28, 107].

For the translation group, where the associated coordinate transformation

is simply given by φ′ = sτ (φ) = φ − τ , the infinitesimal generator is given by

Lt = − ∂
∂φ

and the exponential map can be seen to be:

gt(τ) f(φ) = eτLtf(φ) = f(φ)− τ
∂f(φ)

∂φ
+

1

2!
τ 2∂

2f(φ)

∂φ2
+ · · · = f(φ− τ) (4.7)

The final result that gives a way to construct equivariant spaces [126] is given by

the following Theorem [108, 109]3:

Theorem 5 The function space V = span{ψ1(φ), . . . , ψJ(φ)} is equivariant un-

der the transformation group G if and only if V is closed under the action of the

3This Theorem is still true for any k-parameter transformation group
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infinitesimal generator L associated with the group G, that is, if and only if there

is a matrix B such that:

LΨ(φ) = BΨ(φ) (4.8)

which is called the interpolation equation, and the interpolation matrix can be

written as:

A(τ) = eτB = I + τB +
1

2!
τ 2B2 + · · · (4.9)

Proof: See the proof in [108, 109].

If we apply Theorem 5 for the case of the translation group, we have an

equivariant space V if and only if LtΨ(φ) = ∂
∂φ

Ψ(φ) = BΨ(φ) for a given J × J

matrix. The solution to this ordinary differential vector equation is simply:

Ψ(φ) = eφBΨ(0) (4.10)

where Ψ(0) (initial condition) is the column vector Ψ(φ) evaluated at φ = 0.

Since the coordinates of the vector Ψ(0) can have any value, the general solution

is a vector Ψ(φ) such that span{ψ1(φ), . . . , ψJ(φ)} = R(eφB) where R(eφB)

means the column space of the matrix eφB = I + φB + 1
2!
φ2B2 + · · ·, which is

the corresponding equivariant space. From the second part of Theorem 5, the

interpolation matrix is given by A = eτB and the interpolation equation is gt(τ)

Ψ(φ) = Ψ(φ− τ) = eτBΨ(φ).
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Each particular choice for the matrix B gives rise to a particular set of basis

functions, whose span is a particular equivariant space. Notice that once this

matrix is chosen, the steering functions are simply readily obtained in a very

simple way using (4.4). This simplicity in the derivation is the main advantage

provided by the Lie Theory formulation as opposed to the derivations provided

in [52, 100, 89, 90].

4.2.2 2D Digital filter banks steerable under rotation

constructed from equivariant spaces

In this section, we illustrate how the steerable filter designs provided by Freeman

and Adelson [52] and Simoncelli [99] are actually a particular case of the formula-

tion provided above based on Lie groups. Let H(ωx, ωy) be the frequency response

(DTFT) of a 2D digital filter h(nx, ny) such that H(ωx, ωy) is polar separable in

the Fourier domain, that is, H(ωx, ωy) = H(r, φ) = B(r)Θ(φ) (r =
√
ω2

x + ω2
y

and φ = arctan(ωy/ωx) are the polar coordinates in the Fourier plane) , where

the angular function Θ(φ) gives the angular profile in the Fourier domain of the

filter h(nx, ny). The goal is to make the function Θ(φ) steerable under the trans-

lation group so that H(ωx, ωy) becomes steerable under the rotation group. The

requirement of polar separability is not necessary, that is, the only necessary re-

quirement is that for each r, the function H(r, φ) has to be steerable on the φ
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coordinate. However, in this chapter, we concentrate in the particular case where

H(ωx, ωy) is polar separable, as in [52, 100].

Consider the particular choice of letting B be a J × J diagonal matrix with

purely complex elements of conjugate pairs:

B =




jλ1 0 0 · · · 0

0 −jλ1 0 · · · ...

0 0
. . .

...
...

...
...

... jλM 0
0 0 0 0 −jλM




(4.11)

where J = 2M and λi 6= λk, i 6= k. This results in an equivariant space

given by the span of 2M linearly independent complex exponentials, that is,

V = span{ejλ1φ, e−jλ1φ,

. . . , ejλMφ, e−jλMφ}. Let Ψo(φ) = [ejλ1φ, e−jλ1φ, . . . , ejλMφ, e−jλMφ]T . This is a

valid set of basis functions for the equivariant space V . The corresponding inter-

polation matrix Ao(τ) associated with Ψo(φ) is given by Ao(τ) = diag[ejλ1τ , e−jλ1τ ,

. . . , ejλMτ , e−jλMτ ]. The final set of basis functions that is used to construct the
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2D filter bank is obtained performing a non-singular4 linear transformation P on

Ψo(φ) as follows:

Ψ(φ) = PΨo(φ), P =




β1

2
e−jλ1φ1 β1

2
ejλ1φ1 · · · βM

2
e−jλMφ1 βM

2
ejλMφ1

β1

2
e−jλ1φ2 β1

2
ejλ1φ2 · · · βM

2
e−jλMφ2 βM

2
ejλMφ2

...
...

...
...

...

β1

2
e−jλ1φJ β1

2
ejλ1φJ · · · βM

2
e−jλMφJ βM

2
ejλMφJ




(4.12)

which gives ψi(φ) =
∑M

k=1 βi cos(λk(φ− φi)). Now, taking the angular profile of

the basic filter H(ωx, ωy) to be Θ(φ) =
∑M

k=1 βk cos(λkφ), we have that ψi(φ) =

Θ(φ − φi), thus, in this particular case, the basis functions {ψi(φ)}J
i=1 are all

obtained as different shifts of the angular function Θ(φ), which is actually the

function to be steered. The set of J angles {φi}J
i=1 are called basic angles or

orientations. The interpolation matrix for Ψ(φ) is readily given by:

g(τ) Ψo(φ) = Ao(τ)Ψo(φ) ⇔ g(τ) P−1Ψ(φ) = Ao(τ)P
−1Ψo(φ)

⇔ P−1(g(τ) Ψ(φ)) = Ao(τ)P
−1Ψ(φ) ⇔ g(τ) Ψ(φ) = PAo(τ)P

−1Ψ(φ)

(4.13)

which means that A(τ) = PAo(τ)P
−1, where P is given in (4.12). Thus, Ao(τ)

and A(τ) are similar matrices. Since the function to be steered is Θ(φ) =

4Therefore, it is still a valid set of basis functions.
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bTΨo(φ) = bTΨo(φ), where b = [β1

2
, β1

2
, . . . , βJ

2
, βJ

2
]T , using (4.4), the final set

of steering functions α(τ) = [α1(τ), . . . , αJ(τ)] associated with Ψ(φ) is given by

αT (τ) = bT P−1A(τ) = bT P−1PAo(τ)P
−1 = bT Ao(τ)P

−1 (4.14)

satisfying that

g(τ) Θ(φ) = Θ(φ− τ) =

J∑

i=1

αi(τ)Θ(φ− φi) ∀τ ∈ R (4.15)

showing the following Lemma.

Lemma 4 Given a set of basic angles {φ1, . . . , φJ}, the set of steering functions

that are needed to steer any angular profile of the type Θ(φ) =
∑M

k=1 βk cos(λkφ)

is given by:

αT (τ) = bT Ao(τ)P
−1 (4.16)

where b = [β1

2
, β1

2
, . . . , βJ

2
, βJ

2
]T , Ao(τ) is the interpolation matrix associated with

Ψo(φ) = [ejλ1φ, e−jλ1φ, . . . , ejλMφ, e−jλMφ]T and P is given as in (4.12) and de-

pends on the specific basic angles {φ1, . . . , φJ} that are chosen.

Proof: The proof is contained in the above explanation.
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Let H(ωx, ωy) = H(r, φ) be, without loss of generality, the frequency response

of a filter h(nx, ny) oriented at 0 degrees. We can consider the set of J filters

{hφi
(nx, ny)}J

i=1 oriented at angles {φi}J
i=1 having frequency responses:

Hφi
(ωx, ωy) = Hφi

(r, φ) = H(r, φ− φi) = B(r)ψi(φ) = B(r)Θ(φ− φi) (4.17)

where it can be seen that all the basic filters {Hφi
(ωx, ωy)}J

i=1 are obtained as

rotated versions of a unique filter H(ωx, ωy). If an image f(nx, ny) with DTFT

F (ωx, ωy) is filtered with these J filters, since convolution is a linear operation,

it is possible to synthetize exactly the output of a filter oriented at an arbitrary

orientation, by linearly combining (using the steering functions) the outputs of

the J filters. Again, let y(nx, ny) (with DTFT Y (ωx, ωy)) be the output of the

filter h(nx, ny) and yφi
(nx, ny) (with DTFT Yφi

(ωx, ωy)) be the output of the

i-th filter applied to the image f(nx, ny). Freeman and Adelson [52] as well

as Simoncelli [99] proposed to use angular profiles of the type Θ(φ) = cosn(φ)

together with equispaced basic angles. This is actually a particular case of the

above formulation because it is always posible to find a number J = 2M of

complex exponentials such that Θ(φ) ∈ span{ejλ1φ, e−jλ1φ, . . . , ejλMφ, e−jλMφ}.

Clearly, as n increases, the number of basis functions (basis filters) that are

needed to steer Θ(φ) is larger and therefore, the complexity for steering the

filter output increases. On the other hand, when n increases, the support of the
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Figure 4.3: Firs row: n = 1, λ1 = 1, J = 2. Low pass and High pass filters are
also shown; Second row: n = 3, λ1 = 1, λ2 = 3, J = 4; Third row: n = 5, λ1 = 1,
λ2 = 3, λ3 = 5, J = 6

function cosn(φ) decreases which implies that the angular bandwidth of the filter

H(ωx, ωy) becomes narrower (better resolution in angle). Fig. 4.3 illustrates the

frequency responses for the filters corresponding to the cases of n = 1, 3, 5 where

the basic angles have been chosen (as in [52, 99]) to be equiespaced starting with

φ1 = 0 degrees, that is, φi = (i− 1)π/J , i = 1, . . . , J .

HP ωx ωy,( ) HP ω– x ωy–,( )

LP0 ωx ωy,( )

LP1 ωx ωy,( ) LP1 ωx– ωy–,( )

LP0 ωx– ωy–,( )H φi
ωx ωy,( ){ }

i 1=
J

H φi
ωx– ωy–,( ){ }

i 1=
J

2 2

Figure 4.4: Structure of the steerable pyramid

In [52, 99, 98] it is shown how one can design a multi-scale, self-inverting,

overcomplete pyramid decomposition (tight frame) in `2(Z2), where it is possible
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to perform steerability at every scale or resolution independently, that is, it is

possible to steer any subband to any desired orientation. The pyramid struc-

ture can be seen in Fig. 4.4 where there is a total of 4 different filters to be

designed, namely, HP (ωx, ωy) (high pass filter), LP0(ωx, ωy) (first low pass fil-

ter), LP1(ωx, ωy) (second low pass filter) and the basic band pass filter H(ωx, ωy),

whose J rotated versions gives the set of J oriented band pass basis filters. Three

constraints are optimized in the design of the J filters, namely: a) Aliasing can-

cellation for the filter LP1(ωx, ωy), b) unity overall system response which is

sufficient for perfect reconstruction since there is (approximately) no aliasing and

c) recursive structure is inserted in the low pass branch of the second low pass

filter LP1(ωx, ωy). Since numerical methods are used for the optimization, the set

of 2D digital filters do not satisfy exactly the flat power condition. The resulting

transform is overcomplete by a factor of 4J
3

approximately5:

Redundancy = J

(
1 +

1

4
+

1

16
+ · · ·

)
=

4J

3
(4.18)

for the case of J basic band pass filters. For J = 4, we have a redundancy factor

of approximately 5.3. Our work has not focused on improving the design of these

filters and for more details about the design, see [99, 98]. However, some future

work is considered in Chapter 5.

5Assuming that filtering in the pyramid is performed until there is only 1 pixel left
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4.3 Angular oversampling in steerable transforms

Let c(xo, φ) represent the value of a transform coefficient corresponding to the

output of a rotated filter with orientation φ for a certain spatial location xo. In a

steerable transform with J basic orientations, at each scale or level, given the J

coefficients {c(xo, φ1), c(xo, φ2), . . . , c(xo, φJ)}, the transform coefficient c(xo, φ)

for an angle (orientation) φ of that same spatial location will be given by:

c(xo, φ) =
J∑

i=1

αi(φ)c(xo, φi) ∀φ (4.19)

which gives a curve c(xoφ) ∈ W , where W = span{α1(φ), α2(φ), . . . , αJ(φ)},

which we call steerable curve. For angular profiles of the type Θ(φ) = cosn(φ),

with n odd, notice that the frequencies λ1, . . . , λM are all odd implying that the

interpolation matrix Ao(φ) satisfies that Ao(φ + π) = −Ao(φ), and thus, from

(4.14), it is clear that c(xo, φ+ π) = −c(xo, φ).

The important fact to observe is that if we have a set of transform coeffi-

cients {c(xo, φi)}K
i=1, where K > J , for a given location xo, all these points are

constrained to belong to the same (deterministic) steerable curve (4.19), which

is different for each spatial location xo in the subband.

Since only J basic orientations are enough to interpolate exactly any other

orientation, if we have K > J quantization intervals, the steerability constraint
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induces a “consistency” constraint on these intervals which will help to reduce

uncertainty in some of the quantization intervals. Equivalently, the fact that

there is a deterministic curve linking the values of the coefficients at the dif-

ferent orientations implies that if we are given instead J quantization intervals

{I(xo, φ1), . . . , I(xo, φJ)} at the J basic angles, there is a certain deterministic

region R(xo, φ) of uncertainty at any other angle φ. We explain in Section 4.4.2

how to calculate the upper and lower bounds of these region.

Notice that using Lemma 4 in Section 4.2.2, we can calculate c(xo, φ) from

any J angles (not necessarily equispaced) where the steering functions {αi(φ)}J
i=1

depend on the specific set of basic angles that are used {φi}J
i=1. In the same way,

the region of uncertainty R(xo, φ) can be calculated making use of Lemma 4. As

we will see later this has important implications in the quantization process.

We are interested in studying the case of having many orientations (oversteer-

ing) in the reprsentation, thus, we will generate, from the J basic orientations

{φi}J
i=1, a certain number K > J of subbands corresponding to the K orien-

tations. We call this situation “angular oversampling” because there are more

angles that are needed to perform steerability. This is because we want to study

the trade-off between redundancy and accuracy in the representation assuming

that a quantization of the coefficients takes place. The motivation for oversteering

(e.g. increasing the number of orientations) is that when the number of oriented

quantized subbands increases, we expect to be able to localize more efficiently
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energy that is oriented in angles which are different than the basic angles. This

improved localization in energy, which consequently increases the coding capa-

bility, will try to compensate the corresponding increase in redundancy caused

by the use of more orientations.

4.4 Techniques to represent efficiently

the oversampled data

All the discussion that follows here concentrates on the problem of quantizing

and coding all the oriented subbands (orientations) in only one scale, and more

specifically it focuses only on the problem of removing redundancies across differ-

ent orientations, not across scales. This particular coding problem is the one that

can be solved efficiently by using (angular) consistency constraints. In addition

to our proposed scheme, we could use a zero-tree based algorithm in order to

remove statistical dependencies across the scales, as well as a context-based cod-

ing algorithm to remove redundancy inside each individual subband, all of them

already developed in the context of wavelet transforms [118, 128, 97, 96, 27].

It is very important to note that in the light of a content based image retrieval

application, since we are interested in extracting features from the transform do-

main, the distortion measure we consider is the average distortion of the transform

coefficients.
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It is clear that it is not efficient to code each oriented subband indepen-

dently because of the large correlation among the different orientations in a given

level. In the following subsections, we introduce two approaches to code the

oversampled data making explicit use of the angular correlation among different

subbands.

4.4.1 Energy localization in angle: Selection of maximums

An important fact we have observed is that angular oversampling permits to lo-

calize most of the energy of the image in a few coefficients (energy compaction in

angle). This suggests that for a given spatial location, given a set of K > J ori-

ented subbands, one could use as the J basic angles those orientations having the

largest energy, quantize these coefficients and perform predictive encoding of the

rest of coefficients corresponding to orientations having lower energy. As an ex-

periment, we generate, in a 1 level pyramid, from the 4 basic orientations, 10 and

100 equally spaced (in angle) different orientations from 0 to π (see Fig. 4.5).

Then, we perform a thresholding as follows. For each number of orientations,

we select at every spatial location xo, the maximum coefficient in magnitude

|c(xo, φmax)| (φmax indicates the angle for which the magnitude is maximum) out

of all the orientations and set to 0 the rest of coefficients (corresponding to the

other orientations). Then, we perform a simple thresholding in magnitude over
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the previously selected maximums so that c(xo, φmax) → 0 if |c(xo, φmax)| < th,

where th is a preselected threshold. Finally, we reconstruct the original image

(“Lena”) from the resulting coefficients by using linear reconstruction convolving

with all the steered filters. In Fig. 4.5, we see that we localize energy more effi-

ciently when we increase the number of orientations, so there is a substantial gain

in energy compaction. Notice that in this experiment we have used as distortion

measure the distortion in the reconstructed image in order to illustrate the en-

ergy compaction. However, we are interested in taking advantage of this energy

compaction property in the transform domain in order to code efficiently the K

angular coefficients. This energy compaction in angle motivates the following
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very simple method to represent the data:
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1. Let J be the number of necessary basic angles in the steerable represenation

and K > J be the number of available angles resulting in an oversteering.

For every spatial location xo, depending on the coding accuracy we want

to achieve, we select the T (1 ≤ T ≤ J) angles for which the associated

coefficients have largest magnitude out of the K available orientations and

quantize their value according to some scalar quantizer whose stepsize will

depend also on the desired coding resolution.

2. For every spatial location, using these T largest quantized values (assuming

the other J−T orientations having 0 coefficient values), we can estimate the

steerable curve and therefore we can predict the values of the coefficients

that correspond to all the other K − T angles, and the prediction error is

quantized.

This method, however, has the disadvantage that the coding resolution is only

based on the increase in the energy localization as we increase the number of

orientations, but it is not taking full advantage of the properties of smoothness of

the steerable curve. It uses only T (1 ≤ T ≤ J) to reduce the uncertainty in all

the other K−T angles. We have also observed that the prediction errors are very

random, which means that it will not be possible to reduce the rate significantly

even if entropy coding is used.
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Notice that once some knowledge about the K − T coefficients is obtained,

it is possible (using different combinations of J angles) to reduce further the

uncertainty of the values of the K coefficients. Thus, one should try to use all

the available knowledge in order to reduce as much as possible the uncertainty

produced after the quantization process. This is explored in the next section.

4.4.2 Use of Consistency Constraints

In this case, we establish two constraints, one due to the smoothness (steerabil-

ity) constraints on the steerable curve linking all the angular coefficients of all

the subbands (for every spatial location) and another one due to the quantization

itself. As we increase the oversampling, we will have a reduction in the recon-

struction errors (improving coding accuracy) which will try to compensate the

increase in the bit rate.

We introduce two approaches to take advantage of the 2 consistency con-

straints for coding purposes.

4.4.2.1 Projection on convex sets (POCS)

The first strategy we provide is supported by POCS theory [131]. Consider that

at a given spatial location xo, we apply a scalar quantizer Q (possibly with a

different stepsize for each angle) to each of the angular coefficients, obtaining a
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K-dimensional vector (K > J) cq(xo) = [cq(xo, φ1), . . . , cq(xo, φK)]T of quan-

tized coefficients. Since the steerable curve c(xo, φ), originated from the unquan-

tized coefficients, belongs to the space W spanned by the interpolation functions

{α1(φ), . . . , αJ(φ)}, and we also know the quantization interval to which each

coefficient belongs to, we can iterate projections on the following 2 sets:

1. S1: The set of functions that belong to W = span{α1(φ), . . . , αJ(φ)}, which

is a J-dimensional closed linear manifold (subspace) in L2(R).

2. S2: The hypercube (contained in RK) defined by the K quantization inter-

vals {I(xo, φk)}K
k=1. This hypercube is given by Q−1(cq(xo)), that is, the

set of vectors c ∈ RK such that cq(xo) = Q(c).

The following Lemma allows us to use the Global convergence theorem of POCS

[131] in order to find a final estimate ĉ(xo) which satisfy both constraints, that

is, which belongs to S1 ∩ S2.

Lemma 5 The sets of constraints S1 = W and S2 = Q−1(cq(xo)) are convex and

therefore, projecting alternatively on these 2 sets will converge to a K-dimensional

vector ĉ(xo) ∈ S1 ∩ S2 (consistent estimate).

Proof: See Appendix C.1.

Therefore, we propose to project iteratively on the convex sets S1 and S2.
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The projection P1 on S1 is actually an orthogonal projection that takes the

current estimate ĉ[j](xo) and updates it as follows:

ĉ(xo) = P 1ĉ(xo) = A(AT A)−1AT ĉ(xo), A =




α1(φ1) α2(φ1) · · · αJ (φ1)

α1(φ2) α2(φ2) · · · αJ (φ2)

...
...

...
...

αJ(φK) · · · · · · αJ(φK)




(4.20)

The initial estimate is just ĉ[0](xo) = cq(xo). Projection P1 finds the vector in W

that is closest to the current estimate ĉ[j](xo). Notice that since the K angles for

which the steerable curve c(xo, φ) is sampled are fixed, the matrix A and hence

the matrix P , are known and fixed. The complexity of this projection increases

with K since P is a K×K matrix, which means we need K2 multiplications and

K(K − 1) additions for each location xo.

The projection P2 on S2 is done as follows. Let I(xo, φk) = [L(xo, φk),

U(xo, φk)]. If ĉ[j](xo, φk) ∈ I(xo, φk) (quantization interval at angle φk), ĉ
[j+1](xo,

φk) = ĉ[j](xo, φk); if however, ĉ[j](xo, φk) 6∈ I(xo, φk), we update the estimate to

the bound of the quantization interval I(xo, φk) which is closest to ĉ[j](xo, φk),

that is, if |ĉ[j](xo, φk) − L(xo, φk)| < |ĉ[j](xo, φk) − U(xo, φk)|, then, ĉ[j+1](xo,

φk) = L(xo, φk). Otherwise, ĉ[j+1](xo, φk) = U(xo, φk). In order to perform this

projection, we only need to perform k comparisons.
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Figure 4.6: Example of non consistent angles. Number of angles = 32. Stepsize
∆ = 11. Original steerable curve (black curve) and estimated values (red dots)
are shown where it can be seen that there are some angles for which the estimated
values do not belong to the correct quantization intervals also shown, and hence,
ĉ[j](xo) 6∈ Q−1(cq(xo)). The projection P2 will be applied to those angles by
moving the estimated values to the closest bounds of the correct quantization
intervals.

Fig. 4.6 illustrates the case where this projection will be applied to some

angles. The projection P2 finds the vector in Q−1(cq(xo)) that is closest to the

current estimate ĉ[j](xo). Alternating projections means that we keep applying

the composite projection P = P2P1. The property that ensures convergence is

that a) every vector c ∈ S1 ∩ S2 is a fixed point of both P1 and P2, and hence of

P and b) every fixed point of P is a vector in S1 ∩ S2. Convexity of the sets is

crucial in order to ensure that each projection is unique, that is, a projection of

a vector in a non-covex set may not be unique.
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The meaning of consistency here is that the estimate ĉ(xo) is consistent with

all the knowledge available, that is, it is consistent with the quantization proper-

ties and it is consistent with the steerability property. Obviously, the accuracy of

the estimate ĉ(xo) should increase when we increase the number of orientations

K.

In practice, a finite number of alternating projections is used, namely, we keep

projecting with P until the difference in norm of consecutive estimates becomes

negligable. After a sufficient number of iterations, we then perform differential

entropy coding, that is, we do entropy coding on the quantized differences (in-

dices) between coefficients of adjacent angles. The total number of bits can be

estimated by multiplying these entropies by the corresponding number of co-

efficients. This differential entropy coding is motivated from the fact that the

steerable curve is always a smooth curve due to the fact that each of the steering

functions αi(φ) is bandlimited and contains only a few harmonics.

This POCS-based technique presented here resembles that one used in [84,

111] in the context of A/D conversion of periodic bandlimited signals. In [84, 111],

the alternating projections are applied in the time domain and the function space

in that case is the space of periodic bandlimited signals. An estimate that belongs

to the intersection of both convex sets is said to be a consistent estimate in

[84, 111].
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4.4.2.2 Regions of uncertainty

In the second strategy, the idea is, using J quantization intervals {I(xo, φk)} at J

angles, we make use of the steerability proprety to constrain the region R(xo, φ)

where all the K − J coefficients should fall in (region of uncertainty). We can

use any J angles, and each group of J angles will give rise to a different region

of uncertainty. The intersection of all these regions of uncertainty will determine

another region of uncertainty that will tend to be smaller due to the correlation

among the different oriented subbands. We begin first quantizing the first J basic

coefficients which were obtained from the steerable pyramid (usually, these are

equispaced angles) and then the first region of uncertainty is determined. Each

time a new orientation is added, we calculate other regions of uncertainty consid-

ering different sets of J angles. This procedure can be seen to be similar to the

projection P1 used in the POCS-based approach, which is actually a least squares

linear fitting. The fitting with the interpolation functions {αi(φ)}J
i=1 tells us ap-

proximately where the original non quantized coefficients of the different angles

should be. Similar information can be obtained by performing the intersections

of all the different regions of uncertainty that come from the different groups of J

angles that we have as we keep adding more quantization intervals at more angles,

up until we have K quantization intervals and we have performed all the possible

intersections. At this point, it is not possible to reduce more the uncertainty of
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the K angular coefficients c(xo). Finally, the reconstruction vector ĉ(xo) will

be taken as the vector composed by the middle points of the final quantization

intervals.

Notice that given a chosen number K of total orientations, we can precalculate

easily the values of all the K sampled values of each of the interpolation functions

{αi(φ)}, since we know how to find all possible steering functions from Lemma

4. Once we have the corresponding samples of the steering functions, calculating

each intersection requires K × J multiplications (in order to find the coefficient

values at the K angles) and K comparisons for each spatial location xo. Next,

we explain how to find the regions of uncertainty.

Let RU(xo, φ) and RL(xo, φ) denote the upper and lower limits of the region

of uncertainty R(xo, φ). These upper and lower limits are curves themselves and

the area between them on the domain [0 π] will determine the total uncertainty.

The problem of calculating R(xo, φ) can be stated as a linear programming prob-

lem for every angle φ, in the following way: given any J quantization intervals

{I(xo, φ1), . . . , I(xo, φJ)} we have to find the values {c1, . . . , cJ} which are the

solution of the following two linear programming problems:

RU(xo, φ) = max
∑J

i=1 ciαi(φ), RL(xo, φ) = min
∑J

i=1 ciαi(φ)

subject to: li ≤ ci ≤ ui, I(xo, φi) = [li ui], i = 1, . . . , J

(4.21)
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where ∆(φi) = ui − li is the stepsize of the scalar quantizer applied at φi and

Width(xo, φ) = RU(xo, φ)−RL(xo, φ). We notice that these linear programming

problems have bounded solutions because the set of constraints is bounded and

the solutions {c1, . . . , cJ} correspond to borders (upper or lower) of the quantiza-

tion intervals {I(xo, φ1), . . . , I(xo, φJ)}. The following theorem gives a complete

characterization of the region of uncertainty R(xo, φ).

Theorem 6 Given J quantization intervals {I(xo, φ1), . . . , I(xo, φJ)}, the region

of uncertainty R(xo, φ) is determined by:

RU(xo, φ) =

J∑

i=1

U(φi)αi(φ) where U(φi) =





ui if αi(φ) > 0

li if αi(φ) < 0





RL(xo, φ) =
J∑

i=1

L(φi)αi(φ) where L(φi) =





li if αi(φ) > 0

ui if αi(φ) < 0





where I(xo, φi) = [li ui]. Moreover, the following properties are satisfied:

1. Width(xo, φ) = RU(xo, φ)−RL(xo, φ) =
∑J

i=1 ∆(φi)|αi(φ)|, where ∆(φi) =

ui − li, i = 1, . . . , J .

2. The central curve ĉ(xo, φ) of the resulting region of uncertainty R(xo, φ) is

a steerable curve given by ĉ(xo, φ) =
∑J

i=1 ĉ(xo, φi)αi(φ) where ĉ(xo, φi) =

(li + ui)/2, i = 1, . . . , J .
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3. R(xo, φ) = R0(xo, φ)+ ĉ(xo, φ), where R0(xo, φ) is the region of uncertainty

with bounds given by RU0
(xo, φ) =

∑J
i=1

(
∆(φi)

2

)
|αi(φ)| and RL0

(xo, φ) =

−RU0
(xo, φ).

Proof: See Appendix C.2. Therefore, Width(xo, φ) does not depend on the
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Figure 4.7: (a) Region of uncertainty R(xo, φ); (b) Width(xo, φ).

relative position of the quantization interval centers but it only depends on the J

basic angles that are used which determine the set of steering functions {αi(φ)}J
i=1

and on the quantization intervals ∆(φi) = ui − li, i = 1, . . . , J that are used for

the basic angles. Notice that this theorem implies that the linear programming

problem can be normalized to the case where all the quantization intervals are

centered at 0. Figs. 4.7(a) and 4.7(b) show the region of uncertainty and the

width of this region for a particular case where the basic quantization intervals

have an stepsize ∆ = 5 and the basic angles are 0,π
4
,π
2

and 3π
4

. It can be seen

155



0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

4

6

8

ANGLE

REGION OF UNCERTAINTY

Figure 4.8: Normalization of the problem to the case where all the quantization
intervals are centered at 0.

in these figures that the width of the uncertainty Width(xo, φ) increases as we

move away from the basic angles, as expected. Fig. 4.8 shows the normalization

of the problem. Since each different set of J basic angles gives rise to a different

region of uncertainty, when we have more than J angles, we can always consider

taking the intersection of different regions of uncertainty. An illustrative example

of intersecting regions is given in Fig. 4.9 where there is a total of K = 6 angles

and the intersection of 3 regions of uncertainty is shown.

4.4.3 Experimental Results

We perform experiments with the “Lena” image and more particularly, we study

the coding performance of our algorithms on each level of the steerable pyramid.

Similar results have been found in each of the levels and we show here, as a good
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Figure 4.9: An example with K = 6 angles (2 additional angles) and 3 regions of
uncertainty. The intersection is reducing the uncertainty.

representative, the 3rd level of the steerable pyramid. In our experiments, we use

a steerable transform with J = 4 basic angles and we oversteer the representation

to 8, 16 and 32 orientations. We compare the coding performance between the

non oversteered case, that is, using only 4 basic angles (with direct quantization)

chosen equally spaced angles as 0,π
4
,π
2

and 3π
4

, and the 3 other cases with over-

steering. The comparison has been made in terms of the total number of bits

which is measured as explained in Section 4.4.2 and the MSE is averaged over all

the spatial locations and over all the angles (not only the initial basic J angles)

that we have in each case and thus, it is measured on the transformed domain 6.

In order to get a range of values for the MSE, we have changed the value of the

stepsize ∆ for the scalar quantizer which is applied initially at every angle. We

6Notice that we are considering that the MSE is measured over the K angles.
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Figure 4.10: (a) MSE vs stepsize; (b) Bits vs stepsize.

assume that initially, the same stepsize is applied to all the angles. We have used

the method based on POCS and in our future work we expect to use the second

method based on intersection of regions of uncertainty. Fig. 4.10(a) shows how

the MSE is reduced as we increase the angular oversampling in the representa-

tion. From 4 orientations to 8 and 16 orientations, the improvements are 2.5 dB

and 6 dB approximately, respectively. We also notice that for 32 orientations, the

MSE is almost not reduced with respect to 16 orientations. The interpretation

of this is that the smoothness of the steerable curve c(xo, φ), which in this par-

ticular case contains 2 harmonics (λ1 = 1, λ2 = 3) is so strong that using more

constraints (more angles) is useless. In Fig. 4.11, we can see that there is a gain

for low rates in the case of using 16 and 32 orientations with respect to using

only the 4 basic orientations. This is because for these low rates, the reduction in
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Figure 4.11: MSE vs the total number of bits.

MSE as we increase the number of orientations is faster than the corresponding

increase in the number of bits, resulting in a coding gain.

4.5 Rotation Invariance in Content-based image

retrieval

As mentioned in Section 4.1, one of the main drawbacks of using critically sampled

wavelet filter banks is their inability to provide rotation invariance when they are

applied in texture recognition and retrieval applications. In order to illustrate

this problem, consider the following examples. Fig. 4.12 shows the subbands

obtained using a steerable pyramid with 4 basic angles and with 3 levels when

the input image is the texture “wood” from the Brodatz set [85] rotated (counter-

clockwise) 30 degrees. It can be seen observed that the 2 subbands with more
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Figure 4.12: Texture “wood” rotated 30 degrees. Subbands obtained from the
steerable pyramid with 4 basic angles with 3 levels. Subbands have been scaled to
have the same size. The rows represent the scales, from top (coarsest) to bottom
(finest). The columns represent the orientations, from left to right: 0, 45, 90, 135
degrees.

energy are the subband oriented at 45 degrees (largest energy) followed by the

subband oriented at 0 degrees. Fig. 4.13 shows the same steerable pyramid, now

with the input image being the same texture “wood” rotated 150 degrees. In this

case, the 2 subbands with more energy are the subband oriented at 135 degrees

(largest energy) followed by the subband oriented at 0 degrees. Notice that if

we consider the sequence of angles 0, 45, 90, 135, 180, 225, . . . and take into

account that c(xo, φ + π) = −c(xo, φ), what is observed is that the energy has

gone from the angles {0, 45} in Fig. 4.12 to the angles {135, 180} ' {0, 135} in

Fig. 4.13, where 180 degrees can be identified as 0. This is exactly the property
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Figure 4.13: Texture “wood” rotated 150 degrees. Subbands obtained from the
steerable pyramid with 4 basic angles with 3 levels. Subbands have been scaled
to have the same size. Same order as in Fig. 4.12.

that identifies rotation invariance, that is, a rotation in the image, corresponds

to a shift across the orientations in the steerable pyramid. As it is shown later,

this is a very useful quality of the steerable representation in order to identify

textures samples which are rotated versions of the same texture.

φ1 = 0 φ2 = 45 φ3 = 90 φ4 = 135
Level 1 0.92 1.58 0.09 0.07
Level 2 8.47 13.61 0.66 0.49
Level 3 27.11 41.27 3.17 2.54

Table 4.1: Steerable pyramid for “wood” rotated at 30 degrees: Percentages (%)
of total energy in the different subbands.
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Figure 4.14: Texture “wood” rotated 30 degrees. Subbands obtained from a
wavelet pyramid with 3 levels using the ’daub3’ filter bank. Subbands have been
scaled to have the same size. The rows represent the scales, from top (coarsest)
to bottom (finest). First column = 0, Second column = 90 degrees, Third column
= 45 and 135 degrees together.

On the other hand, Fig. 4.14 shows the subbands obtained using the ’daub3’

filter bank with a 3-level pyramid when the input image is “wood” at 30 degrees

and Fig. 4.15 shows the same wavelet pyramid, now with the input image being

“wood” at rotated at 150 degrees. In this case, the previous behaviour is not

observed. First, since in this wavelet transform there is no capability of distin-

guishing between having energy at 45 degrees and having energy at 135 degrees,

the subband corresponding to the diagonals (45 and 135 degrees together), has

approximately the same amount of energy in Fig. 4.14 and in Fig. 4.15. It is

not possible to identify a shift across the columns from Fig. 4.14 to Fig. 4.15,
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Figure 4.15: Texture “wood” rotated 150 degrees. Subbands obtained from a
wavelet pyramid with 3 levels using the ’daub3’ filter bank. Subbands have been
scaled to have the same size. Same order as in Fig. 4.14.

and when there is a rotation in the image, the energy is spread out over all the

orientations. Tables 4.1 and 4.2 give the percentages of the total energy that is

contained in each subband for the case of a steerable pyramid with 3 levels and

J = 4 basic orientations. It can be seen that most of the energy is concentrated

in the third level and that the energy moves to the right with a circular shift

φ1 = 0 φ2 = 45 φ3 = 90 φ4 = 135
Level 1 0.77 0.07 0.14 1.89
Level 2 6.70 0.47 0.94 15.22
Level 3 23.18 2.38 3.89 44.32

Table 4.2: Steerable pyramid for “wood” rotated at 150 degrees: Percentages (%)
of total energy in the different subbands.
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φ1 = 0 φ2 = 90 φ3 = 45, 135
Level 1 0.53 0.08 0.04
Level 2 10.31 0.76 1.65
Level 3 61.65 4.82 20.15

Table 4.3: Wavelet pyramid for “wood” rotated at 30 degrees: Percentages (%)
of total energy in the different subbands.

φ1 = 0 φ2 = 90 φ3 = 45, 135
Level 1 0.45 0.1087 0.05
Level 2 9.11 1.2390 2.47
Level 3 50.82 7.0284 28.69

Table 4.4: Wavelet pyramid for “wood” rotated at 150 degrees: Percentages (%)
of total energy in the different subbands.

as explained previously. Tables 4.3 and 4.4 show the percentages of total energy

for the case of a typical wavelet pyramid with 3 levels. As it is observed, the

amounts of energy in the third level are similar in both cases and the energies

are also higher in both cases for the orientations corresponding to 0 degrees and

45, 135 degrees.

This makes it very difficult to be able to recognize rotated versions of the

same texture.

4.5.1 Content-based image retrieval architecture

We consider a very simple architecture for a content-based image retrieval system,

as shown in Fig. 4.16. This is a very standard approach which is typically used
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Figure 4.16: Image retrieval system architecture

in practice. The 2 most important parts of this system are: a) feature extraction,

where a set of features, usually called image signatures, is generated in order to

represent as good as possible the content of each image in the database. The

number of features is much smaller than the size of the image or the subbands

obtained from a multiresolution decomposition (e.g., wavelet pyramid or steerable

pyramid); b) similarity measurement, where a distance between the query image

and each image in the database is computed. The M images with the smallest

distance will be retrieved. Low level features are used in these systems, such as

color, texture, shape, etc.. Our focus is on using texture information for image

retrieval with rotation invariance. Thus, in our work, the input to our system will

be subblocks (containing texture information) of a larger image. Therefore, in a
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real application, a segmentation algorithm would have to be used in conjunction

with this system.

Our goal is to construct an image retrieval system which can recognize the

situation where the query image is a rotated version of some image already present

in the database. Our database is organized in such a way that for each “type” of

texture, we have a set of texture samples (image subblocks), all of them obtained

from the same (larger) texture image oriented at a fixed orientation (e.g. 0

degrees). Therefore, if the query image is already in the image database, we

want to maximize the percentage of textures (from the database) in the M closest

texture samples which are rotated versions of the query image.

In the next two sections we explain in detail the feature extraction and the

similarity measurement processes.

4.5.2 Feature extraction

Since we are interested in achieving rotation invariance, the feature extraction

we consider is based on the subbands obtained from a steerable pyramid. In

this context, it is important to use features which are as “steerable” as possible,

that is, given the features of a texture oriented at an angle φ, the features corre-

sponding to the same texture but oriented at an angle φ′, can be approximately

estimated from the features at angle φ without actually having to calculate the
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features for the rotated version. This is a crucial property that will be used in

the similarity measurement. In this work, we try to achieve a good performance

using simple energy-based features.

Consider the problem of calculating the average energy E l(φ) of a subband ori-

ented at an arbitrary angle φ in a level l, that is, E l(φ) =
(

1
Nl

)∑Nl

k=1(c
l(xk, φ))2,

where Nl is the number of pixels of each of the subbands in level l and cl(xk, φ)

is the value of the transform coefficient at angle φ, location xk and level l. It

is very simple to show that E l(φ) can be calculated from the energies (sampled

autocorrelations) of the basic J subbands and all the sampled cross-correlations

between each pair of basic subbands.

Fact 3 Given a steerable pyramid with J basic angles {φ1, . . . , φJ} and L levels,

the function E l(φ) is given by:

El(φ) = αT (φ)C lα(φ), α(φ) =




α1(φ)

...

αJ(φ)



, C l =




C l
11 C l

12 · · · C l
1J

C l
21 C l

22 · · · C l
2J

...
...

...
...

C l
J1 · · · · · · C l

JJ




(4.22)

where C l
ij =

(
1

Nl

)∑Nl

k=1 c
l(xk, φi)c

l(xk, φj) = C l
ji, l = 1, . . . , L.

Proof: See Appendix C.3.
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Notice that each diagonal element of C l correspond to C l
ii = El(φi), that is,

the average energy at the basic angle φi, while the off-diagonal elements corre-

spond to sampled cross-correlations between the subbands corresponding to each

pair of basic angles. Since the basic (steerable) filters are almost pure bandpass
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Figure 4.17: Energy profile E l(φ), l = 1, 2, 3, for “water” at 30 degrees

filters, that is, since they have approximately zero mean, the subbands obtained

by convolution with these filters will have also approximately zero mean. As

a consequence, the sampled correlation matrix C l will be approximately equal

to the sampled covariance matrix. Notice that since c(xo, φ + π) = −c(xo, φ),

clearly, E l(φ+π) = E l(φ), that is, E l(φ) is a periodic function with period equal

to π.
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Figure 4.18: Energy profile E l(φ), l = 1, 2, 3, for “water” at 150 degrees

Given a perfectly homogeneous texture I with energy profile E l
I(φ) at level

l, if this image is rotated counter-clockwise by an angle θ, obtaining an texture

Iθ, then, we will have that7 El
Iθ

(φ) = El
I(φ− θ), that is, a rotation of an texture

corresponds to a shifted version of the energy profile. This can be observed

comparing the profiles of energy shown in Fig. 4.17 and Fig. 4.18.

These arguments motivate the use of the correlation matrices {C l}L
l=1 as fea-

tures in our system. Notice that since each matrix C l is symmetric, the total

number of features will be J(J + 1)L/2. Thus, the interdependencies between

7Even if the texture is perfectly homogeneous, the effect of the borders and the fact that we
have a cubic grid (not continuous) will yield some deviation from an exact shift of the curve
El

I(φ).
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different orientations in terms of cross-correlations are necessary in order to char-

acterize the energy profile of an arbitrary rotation of a given texture. We do

not consider the use of the energy of the low-pass residual subband as a feature.

Obviously, as J (number of basic orientations) increases, the resolution in angle

increases and the energy profile E l(φ) will be more accurate.

4.5.3 Similarity Measurement

In the similarity measurement, we are interested in making use of the steerability

property in order to be able to align the features corresponding to rotated versions

of the same texture, that is, the steerability property should be used to identify

equivalent features, where equivalency will correspond to having different rotated

versions of a unique texture.

The next proposition shows that the sampled correlation matrix C l
I for a

texture8 at a given level and the sampled correlation matrix C l
Iθ

for the same

texture but rotated counter-clockwise by an angle θ, are related in a simple way.

8Here, we also assume that the texture is perfectly homogeneous and continuous
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Proposition 2 Given a steerable representation with J basic angles, the corre-

lation matrices C l
Iθ

and C l
I , both evaluated with respect to the same set of basic

angles {φ1, . . . , φJ}, are related as follows:

C l
Iθ

= R(θ)C l
IR

T (θ), R(θ) =




α1(φ1 − θ) α2(φ1 − θ) · · · αJ(φ1 − θ)

α1(φ2 − θ) α2(φ2 − θ) · · · αJ(φ2 − θ)

...
...

...
...

α1(φJ − θ) α2(φJ − θ) · · · αJ(φJ − θ)




(4.23)

In the particular case where the J basic angles are taken to be equiespaced, then

R(θ) becomes an orthogonal matrix for any θ, and therefore, C l
Iθ

and C l
I become

orthogonally equivalent.

Proof: See Appendix C.4.

This property holds for every level independently. However, as shown in

Fig. 4.17 and Fig. 4.18, when a texture is rotated, all the decomposition levels,

will be equally rotated. This means that given a texture I and a rotated version

Iθ of it, the Frobenius norms ‖C l
I − R(−θ)C l

Iθ
RT (−θ)‖F (same rotation angle

for all the levels), l = 1, . . . , L, will tend to be small.
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Taking all this into account, the similarity measurement D(I1, I2) between 2

different textures I1 and I2 that we use is the following:

D(I1, I2) = Minθ

(
L∑

l=1

‖C l
I1 −R(−θ)C l

I2R
T (−θ)‖F

)
(4.24)

Figure 4.19: Non rotated set of 16 Brodatz textures. In left-right-top-bottom
order: “bark”, “brick”, “bubbles”, “grass”, “leather”, “pigskin”, “raffia”, “sand”,
“straw”, “water”, “weave”, “wood” and “wool”.

Clearly, those levels containing more energy will influence more in the mini-

mization in (4.24) and those levels with small energy will have little influence in

it.

Notice that when I1 and I2 are two rotated versions of the same texture,

the angle θ∗ for which the minimum is achieved in (4.24) should be close to the

relative angle between I1 and I2, that is, the angle you need to rotate (clock-

wise) I1 in order to get I2. Thus, one way to see the goodness of our similarity
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measurement (4.24) is to check whether the estimated angle θ∗ is actually close

to the real relative angle between 2 physically rotated versions of the same tex-

ture. Moreover, it might also be useful in some practical applications to find out

approximately this relative angle.

In the next section, we show several experimental results about the estimation

of relative angles between 2 texture samples of the same class and also testing

our similarity measurement for the problem of rotation-invariant content based

retrieval.

4.6 Experimental results: Estimation of relative

angles and Rotation-Invariant retrieval

Fig. 4.19 shows the non-rotated set of textures that we have considered in our

work. The complete set consists of thirteen 512×512 Brodatz texture images [85]

that were rotated to different angles before being digitized. Fig. 4.19 shows only

the non-rotated textures which can be considered without loss of generality to be

oriented at 0 degrees. This basic textured images have been rotated to 6 other

angles, namely, 30, 60, 90, 120, 150 and 200, obtaining 6 additional textures of

the same type. Since we are interested in the range of angles from 0 to 180 and
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the average energy function E l(φ) is π-periodic, a rotation of 200 is seen9 as a

rotation of 200 mod 180 = 20.

We have first tested our similarity measurement by estimating, for each class,

the relative angles between the texture (512× 512) images oriented at 30, 60, 90,

120, 150 and 20, and the non-rotated texture oriented at 0 degrees.
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Figure 4.20: (a) “bark” at 60 and 120 degrees; (b) D(θ) for J = 2, 4, 6

Figs. 4.20-4.23 illustrate this by showing the function D(θ) =
∑L

l=1 ‖C l
I1
−

R(−θ)C l
I2

RT (−θ)‖F , for the cases where I1 and I2 are rotated versions of “bark”,

“grass”, “raffia” and “weave” respectively. It can be seen that even in cases where

a texture is homogeneous but does not have a predominant orientation (isotropy)

9Although this is a limitation of using the energy as a feature, it is not a problem for our
application to not be able to distinguish between φ and 180 + φ
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Figure 4.21: (a) “grass” at 30 and 120 degrees; (b) D(θ) for J = 2, 4, 6

such as “grass” (Fig. 4.21) and “raffia” (Fig. 4.22), the estimated angle θ∗ is quite

close to the real relative angle between I1 and I2. In the same way, for textures

which are not homogeneous, such as “bark” (Fig. 4.20) or “weave” (Fig. 4.23),

the estimated angles are also satisfactory. In the particular case of “weave”, the

presence of 2 clear predominant orientations causes the appearance of 2 local

minimum in the curve D(θ), however, the global minimum is very close to the

correct relative angle.

Tables 4.5 and 4.6 show a summary of the estimated angles for all the different

types of textures. It can be observed that for those textures that have more than

1 predominant orientation or are quite isotropic, such as “raffia”, “weave”, “sand”

or “wool”, J = 2 gives worse estimates than J = 4 or J = 6. In these cases, the
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Figure 4.22: (a) “raffia” at 90 and 120 degrees; (b) D(θ) for J = 2, 4, 6

estimates obtained with J = 2 are not good in part because the resolution in angle

is too small. The quality of the estimated angles for J = 4 and J = 6 are quite

similar on average. In general, the estimates are reasonably good, being better for

those textures having clear predominant orientations (any value of J gives similar

estimates) and being worse for isotropic textures. However, there is a clear failure

for the “bubbles” texture, even with J = 6. We believe that the main reason for

this is that “bubbles” is a texture that is extremely inhomogeneous with respect

to orientation, that is, it is locally oriented but the dominant orientation changes

dramatically and abruptly from one part of the texture to another.

In order to test the rotation-invariance of our proposed scheme, we use 2

collections of texture subimages of size 128 × 128. The first collection, which
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Figure 4.23: (a) “weave” at 0 and 150 degrees; (b) D(θ) for J = 2, 4, 6

forms the non-rotated image database is obtained by partitioning each of the

13 Brodatz (512× 512) textures oriented at 0 degrees (non-rotated) into 16 non-

overlapping subimages (texture samples) of size 128×128. Thus, in total, we have

208 texture samples of size 128 × 128, 16 for each class. The second collection,

which forms the rotated image database, is obtained by partitioning, for each

of the 13 texture classes, 4 large texture images oriented at 30, 60, 90 and 120

degrees also into non-overlapping subimages of size 128×128 and taking, for each

large texture image, the 4 central subimages. In this way, in the second database,

for each texture class, there are also 16 textures for each class and therefore, also

the same total of 208 textures.
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Figure 4.24: Average Percentages (%) of correct retrieval rate

In this system, a query texture sample is taken from the second database

and the M = 16 closest textures belonging to the first non-rotated database are

obtained using the similarity measurement given in (4.24). In the ideal case, the

16 closest textures will belong to the same class as the class of the query texture.

In practice a certain number Nc < 16 will be obtained giving a certain percentage

100×Nc/16. The performance for each class is measured in terms of the average

percentage that is obtained after using as a query all the texture samples we

have for a class in the second database. For comparison, we have used a three

level wavelet pyramid with the ’daub3’ orthogonal set and have used as features

the correlation matrices obtained from the subbands at each level. As similarity
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measurement, we have used the total squared Frobenius distance between the

two sets of three correlation matrices corresponding to the two textures that are

compared.

Fig. 4.25-4.33 show examples of retrieval for several classes using a steerable

pyramid with J = 4 (equispaced basic angles), where the texture in the top is

the texture query sample from the rotated database and the 16 texture below are

the 16 closest texture samples that have been found in the non-rotated database.

Fig. 4.24 shows the average percentages obtained in the retrievals for each texture

class in the different cases. For the different values of J , the basic angles in the

experiments have been always taken to be equispaced. First, it is observed clearly

that the performance obtained using the wavelet pyramid is considerably worse

than that obtained with steerable pyramids, as expected because it is not possible

to achieve rotation invariance with a regular wavelet transform. There are only 2

exceptions, the “sand” and “grass” textures, which are the most isotropic textures

and thus, the selectivity in orientation does not provide a clear advantage.

It can be seen that although some percentages are not high, the retrievals

given in Fig. 4.25-4.33 show that the texture samples that are retrieved and

which belong to a different class than the query, are in many cases, perceptually

similar to the target query. This is observed, for instance, in Fig. 4.27, Fig. 4.28,

Fig. 4.29, Fig. 4.32 and Fig. 4.33. Finally, it should be also noted that there is a

clear improvement from J = 2 to J = 4 throughout all the texture classes. On
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the other hand, from J = 4 to J = 6, the performance decreases for isotropic

and homogeneous textures while it increases for textures that have predominant

orientations and also for inhomogeneous textures such as “bark” or “bubbles”.

The overall average correct retrieval rates are 27.76%, 62.23%, 66.49% and 67.85%

for wavelet, J = 2, J = 4 and J = 6 respectively. Therefore, the best overall

average correct retrieval rate is achieved by J = 6.

4.7 Conclusions

The basic results presented in this chapter are as follows. After a detailed re-

view of the basic concepts, properties and construction of steerable filters using

Lie theory, we first define what we call oversteering (angular oversampling), that

is, the situation where the number of oriented subbands in the representation is

larger than the minimum required to reconstruct the original image. Then, we

show how this angular oversampling permits to localize most of the energy of the

image in a few coefficients. Next, we show how to make use of the oversteering

in order to decrease the error in the transform coefficients (increase accuracy)

after these coefficients have been quantized. We describe to methods, one based

on POCS theory and the other one based on calculating regions of uncertainty

and its intersections. We establish several theoretical results regarding the prop-

erties of the regions of uncertainty. This second method requires to find steering
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functions for any set of basic angles which can be done easily using Lie Theory

principles. Several experimental results are given showing the trade-off between

rate and MSE as the number of orientations is increased. Next, we turn to the

problem of rotation-invariant texture retrieval where we consider a simple ar-

chitecture with two main tasks: feature extraction and similarity measurement.

First, we describe the feature extraction which uses a steerable pyramid and cal-

culates the correlation between all the different pairs of oriented subbands in each

level in addition to the energy in each oriented subband. Then, we show that

these features are actually steerable features in the sense that given the features

corresponding for a texture oriented at a certain orientation, we show how to

calculate approximately the features of the same texture but rotated to a dif-

ferent orientation. Finally, we show several experimental results comparing the

use of a regular wavelet pyramid with a steerable pyramid using queries that are

texture samples that are rotated versions of the textures that are present in the

database. These experimental results show the clear superiority of using steer-

able features versus non-steerable wavelet features when it is necessary to have

rotation-invariance.

As a final comment, we have not addressed in this chapter the complexity

of performing the similarity measurement. This is being studied in our current

research (see Chapter 5).
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Figure 4.25: Retrieval example for “bark” at 60 degrees.

Figure 4.26: Retrieval example for “brick” at 120 degrees.

Figure 4.27: Retrieval example for “grass” at 30 degrees.
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Figure 4.28: Retrieval example for “pigskin” at 90 degrees.

Figure 4.29: Retrieval example for “raffia” at 60 degrees.

Figure 4.30: Retrieval example for “water” at 60 degrees.
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Figure 4.31: Retrieval example for “weave” at 90 degrees.

Figure 4.32: Retrieval example for “wood” at 30 degrees.

Figure 4.33: Retrieval example for “wool” at 60 degrees.
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Texture Class J 30.00 60.00 90.00 120.00 150.00 20.00
bark 2 33.17 62.74 92.82 125.48 154.54 19.80
bark 4 30.85 61.45 92.05 121.88 151.71 18.00
bark 6 28.80 60.94 92.05 119.06 151.97 16.46
brick 2 29.57 60.68 89.74 119.57 149.65 20.57
brick 4 30.08 60.42 89.74 120.08 149.40 20.05
brick 6 29.31 61.20 89.74 119.57 149.91 19.54
bubbles 2 66.60 126.00 167.14 10.02 75.34 118.28
bubbles 4 93.08 119.05 167.91 4.88 78.42 109.02
bubbles 6 93.08 106.71 169.20 179.48 80.74 98.48
grass 2 31.11 59.14 100.80 117.00 123.94 8.22
grass 4 31.62 59.65 99.51 120.60 129.60 10.54
grass 6 33.42 58.89 94.11 125.74 135.77 15.68
leather 2 30.34 58.88 85.11 118.80 149.65 22.88
leather 4 31.37 60.42 85.11 119.31 150.68 23.91
leather 6 29.31 58.11 83.57 117.00 146.57 23.40
pigskin 2 33.68 48.34 78.68 100.80 147.60 31.62
pigskin 4 32.40 52.20 81.51 103.88 151.20 28.02
pigskin 6 29.31 51.43 82.03 102.09 147.85 24.17

Table 4.5: Estimated angles for different textures where I1 is a type of (non-
rotated) texture at 0 degrees and I2 is the same texture as in I1 but rotated at
30, 60, 90, 120, 150 and (200 mod 180 = 20) degrees .
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Texture Class J 30.00 60.00 90.00 120.00 150.00 20.00
raffia 2 19.02 45.51 75.08 101.31 136.54 20.05
raffia 4 29.57 59.14 88.45 116.22 148.11 18.25
raffia 6 29.31 59.14 89.48 116.23 147.85 17.49
sand 2 39.85 63.77 103.62 135.77 136.28 175.62
sand 4 37.28 65.31 101.82 129.85 141.68 4.37
sand 6 32.40 60.94 98.49 126.77 139.11 6.95
straw 2 27.00 54.51 89.22 118.28 147.85 18.77
straw 4 28.02 55.28 89.74 118.80 148.62 20.05
straw 6 28.55 56.06 89.74 119.31 148.89 20.06
water 2 28.02 58.62 87.17 117.25 148.11 18.00
water 4 28.28 58.88 87.68 117.00 148.62 18.25
water 6 28.80 58.89 87.94 118.02 148.37 19.03
weave 2 43.71 53.74 83.57 110.57 143.74 7.20
weave 4 33.17 59.65 90.77 122.40 149.40 24.42
weave 6 33.94 58.63 90.51 122.91 148.63 24.42
wood 2 28.54 62.22 89.48 118.80 150.68 19.54
wood 4 28.80 61.45 89.48 118.80 149.91 18.77
wood 6 28.80 61.46 89.49 118.54 149.40 18.51
wool 2 40.11 65.31 116.22 115.97 152.74 27.77
wool 4 31.11 64.02 93.34 115.20 153.00 20.05
wool 6 28.80 64.28 91.80 110.31 154.28 16.20

Table 4.6: Estimated angles for different textures where I1 is a type of (non-
rotated) texture at 0 degrees and I2 is the same texture as in I1 but rotated at
30, 60, 90, 120, 150 and (200 mod 180 = 20) degrees.
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Chapter 5

Current and Future work

Our future work comprises several topics which are related in some way to one

of these main areas: a) Quantized overcomplete expansions and its applications

in quantization, signal processing and communications, b) Lattice theory and

its applications in communications, quantization and code design for network

problems and c) shiftable or steerable filter banks and its several applications to

signal processing.

On the one hand, some of the proposed directions try to continue the work

explained in the previous chapter. On the other hand, several other topics are

proposed which are not a direct continuation of the work contained in this thesis

but are related to some of the different topics described in this thesis.

Next, we explain each of these topics. Some specific topics are actually object

of our current research and thus, are explained in much more detail than others.
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5.1 Amalgamation and Dithering in Periodic

Quantizers

There are two possible ideas to try to improve the performance of these multiple

description quantizers:

1. The idea of merging (amelgamating) cells should be studied carefully. As it

was mentioned in Chapter 3, for the case shown in Fig. 3.2, the diagonally

and vertically shaded triangles could be merged to give a tesselation made

up of regular hexagons and equilateral triangles with the same edge length

as the hexagons. The new tesselation will have a larger absolute mean

squared error but a smaller (dimensionless) normalized mean squared error

G, which means that its rate-distortion performance is better. In other

words, if we merge 2 bad (not having a good shape) cells into a good cell,

we are increasing gracefully the absolute mean square error but we are

decreasing the resulting rate necessary to encode this tesselation, which

intuitively should give rise to a better normalized mean squared error G.

We have not investigated this possibility.

2. Another idea is the use of dithering, which in this context translates to

allowing arbitrary shifts in each of the lattices Λ1, · · · ,Λr (corresponding

to the individual quantizers) before performing the actual quantization.
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It should interesting to study the design of quantizers by taking a simple

initial lattice Λ1 and combining it with several other lattices which are now

both rotations and translations of Λ1, instead of only rotations as we have

considered in Chapter 2 and Chapter 3.

Notice that even though we have not obtained favorable results in the 4 exam-

ples we have tried, it is still not clear whether it is possible or not to design good

quantizers by using periodic quantizers based on lattice intersections. It should

be taken into account that (non-lattice) tesselations which are better than the

best so-far known lattice tesselations have been already found in certain dimen-

sions [62]. On the other hand, the research of these quantizers in the context of

applications such as A/D conversion (quantized overcomplete expansions) may

still be interesting.

5.2 Connections between Lattice Intersections

and Lattice Sampling Conversion

Given a multidimensional continuous signal xc(t1, · · · , tN) = [x(t1), · · · , x(tN )]

that has been sampled in a lattice Λ1 giving vectors xs(i1, · · · , iN) = [x(i1), · · · ,

x(iN )], it is often necessary to resample the same signal in a different lattice Λ2
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without having to reconstruct the original continuous signal xc. The following

steps are taken in order to do this [46]:

1. Upsampling of xs from Λ1 to Λ1 + Λ2 obtaining1 xu
s .

2. Low pass filtering of xu
s with a multidimensional filter L(ω) whose pass

band region in the multidimensional Fourier domain is the Voronoi region

around 0 of the lattice (Λ1 + Λ2)∗, hence, the periodicity in the spectrum

domain of the filtered signal is determined by the lattice (Λ1 + Λ2)∗.

3. Finally, the output of the low pass filtering is downsampled to the lattice

Λ2.

The overall conversion rate is therefore given by det(MΛ2)/det(MΛ1). A very

important issue is that in order to avoid this system being shift-variant, which

is very undesirable in any signal processing application, the lattices Λ1 and Λ2

must have a non-empty intersection. In this latter case, the whole system becomes

shift-invariant with respect to the intersection lattice Λ1∩Λ2. Similar conclusions

are obtained it the upsampling is performed with respect to a sum of more than

2 lattices, which allow at the other end, to perform downsampling in more than

one lattice.

In all the constructions given in Chapter 3, we have several lattices Λ1, · · · ,Λr

which are rotated versions of each other whose intersection gives a lattice Λ.

1As explained in Chapter 2, Λ1 + Λ2 may not be a lattice but just a certain set of points.
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Thus, our decompositions provide all the different (up to scaling) possible lat-

tice conversion structures while keeping the shift-invariance always with respect

to the same (intersection) lattice Λ. It would be interesting to study whether

this fact is useful in a) obtaining new interpolation methods for multidimensional

signals, b) distributed sampling applications where the same continuous multidi-

mensional signal is sampled in different lattices and all or some of these sampled

versions have to be combined appropiately to estimate the original signal with

more resolution in certains parts of the signal domain than in others.

5.3 Optimal power shaping for the Costa

problem (“Writing on Dirty Paper”)2

5.3.1 Basic description of the Costa problem

Let X, Y , S and Z be random N -dimensional vectors. The Costa (“Writing on

Dirty Paper”) problem models the channel as:

Y = X + S + Z (5.1)

2This is current work being carried out in collaboration with Suhas Diggavi from AT&T
Shannon Laboratory. Part of this work is to be published in[12].
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where X is the transmit vector signal, Y is the receive vector signal, S is the

interference vector signal, and Z is a Gaussian random vector. The interference

signal S is non-causally known at the transmitter but it is not known at the

receiver, and the noise Z is independent of X and S and it is not known nei-

ther the transmitter nor the receiver. The transmit signal must satisfy a power

constraint, that is, 1
N
E[‖X‖2] ≤ P .

When the interference and noise are joint i.i.d. Gaussian variables, Costa

[36] showed using random binning methods that if the entire set of samples of the

interfering signal is known to the transmitter in a non-causal way (key condition),

the capacity of this channel is given by:

C =
1

2
log

(
1 +

P

σ2
Z

)
(5.2)

where σ2
Z is the variance of the gaussian random variable Z. Thus, the effect of

the interference S is completely cancelled, that is, as if there were not interference

or the interference were known also at the receiver. This result has been extended

in different ways. For the vector case [29, 134] as in (5.1) where S and Z are i.i.d.

Gaussian vector signals, a similar result holds and the capacity of the channel is

given by:

C =
1

2
log

det(KX + KZ)

det(KZ)
(5.3)
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where KX and KZ are the covariance matrices of X and Z respectively. This is

the mutual information for the vector Gaussian channel without any interfering

signal S. Costa’s result has been also generalized to cases where the interfering

signal is an ergodic process [29] with an arbitrary distribution. Zamir, Shamai

and Erez [137] have generalized the result to the case when the interfering signal

path is an arbitrary sequence and a common source of randomness (dithering) is

used which is available to both the transmitter and the receiver.

There are several applications which are directly connected to the Costa prob-

lem. A very important problem is that of non-degraded vector (multi-antenna)

wireless broadcast channels when the transmitter is equipped with multiple an-

tennas [20, 132]. Another example appears in digital subscriber lines (DSL)

where there is electromagnetic coupling between different lines, which can also

be modeled as a vector broadcast channel [133]. Other examples of applications

include digital watermarking, multimedia information-hiding, steganography [24]

and intersymbol interference (ISI) cancellation [137].

We first provide a review of some related work on code constructions for the

Costa problem and explain briefly the novelty in our work. Then, we explain the

baseline construction in order to illustrate the basic idea and in Section 5.3.4, we

analyze its limitations in terms of power shaping, motivating the use of a trellis

to increase dimension with low complexity and explain with more detail the

difference with our work. Next, in Section 5.3.5, we review the trellis precoding
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idea [49] where the power shaping is performed through constellation points and

emphasize with more detail the difference with our work. In Section 5.3.6, we

introduce our new approach of performing the power shaping through a sequence

of quantizers that is chosen through a trellis structure and finally, in Section 5.3.7,

we show how to perform shaping in a joint manner, more specifically, we show

how to combine trellis precoding and our approach by using the tensor product

of two trellises. We provide a detailed example.

5.3.2 Code constructions for the Costa problem

In all practical constructions it is always assumed, for complexity reasons, that

the encoder has a non-causal knowledge about the interference signal, but the

non-causality is always finite, that is, the encoder only knows the current real-

ization of the random interference vector S of a certain finite dimension. All the

constructions, inspired by the random binning proof of Costa’s result, use two

nested codes, where the fine code plays the role of a channel code and the coarse

code plays the role of a source code or quantizer.

Erez, Zamir and Shamai [137] have proposed a lattice based scheme with 2

nested lattices which makes an explicit use of a source of randomness and dithered

quantization, both at the encoder and the decoder side. The adaptativity of the

system to the allowed power P and the noise power σ2
Z is obtained through the
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use of an (asymptotically optimal) estimation coefficient α = P/(P +σ2
Z) (where

KZ = σ2
ZI) and where the interference signal S is scaled with this coefficient.

However, they do not present any examples of concrete constructions and only

show the existence of lattices through a random construction based on a Loeliger’s

construction [77]. Chou, Pradhan and Ramchandran [25] have proposed turbo

coded trellis-based constructions for this problem. The interference S is also

assumed to be a white and Gaussian vector and the same scaling is performed to

adapt to different levels of noise and transmitting power.

Eyuboglu and Forney [49] proposed a method called Trellis precoding for

intersymbol interference (ISI) channels, which under the assumption of channel

state information at the encoder, reduces to the Costa problem as pointed out

in [137]. This work, which makes use of nested cubic (fine and coarse) lattices,

introduces for the first time the idea of performing a (low complexity) shaping in

the power using a trellis structure similar to the trellis shaping idea introduced

by Forney [50].

We are interested in giving concrete lattice constructions and analyze the

practical performance of theses sytems such as the supported bit rates and the

probability Pe of decoding error for a certain finite dimension, noise power σ2
Z ,

rate R and allowed power P at the transmitter and evaluate this performance

in terms of the geometric parameters of concrete lattices or by simulation. Our

focus is also on deterministic quantization rather than dithered quantization and
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the adaptability to the the different levels of power and noise is obtained by

scaling properly the lattices while keeping them nested. We do not assume any

statistical model for the interference S while the noise is assumed to be a white

Gaussian vector. Although it is possible to use channel trellis codes on top of the

lattice constructions in order to increase the coding gain of these systems against

the noise, we do not consider this issue here and the main concern in this work

is to perform a good shaping to save transmitting power as in [49].

The main difference with the scheme introduced by Eyuboglu and Forney is

that there the shaping is obtained through the fine lattice by expanding the ba-

sic constellation, hence, reducing the rate. We propose the idea of performing

shaping through the coarse lattice which do not result in a constellation expan-

sion. More specifically, we introduce the new idea of transmitting information

bits through a constrained sequence of lattice coset quantizers and explore the use

of very simple coarse lattices in order to have as low complexity as possible. On

the other hand, our method can be actually combined with the shaping method

in [49], so that the shaping is jointly performed by both the channel (fine) code

and by the source (coarse) code.
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5.3.3 Basic (Baseline) Construction

Let Λ1 and Λ2 be two N -dimensional lattices in RN such that Λ2 ⊂ Λ1, that is, Λ2

is a sublattice of Λ1. If MΛ1 and MΛ2 are the respective generator matrices, then

the index |Λ1/Λ2| of Λ2 in Λ1 is given by det(MΛ2)/det(MΛ1) and is equal to the

number of cosets of Λ2 inside Λ1. Let |Λ1/Λ2| = L. Then, we can identify L coset

(canonical) representatives {v1, v2, · · · , vL} which are inside the fundamental cell

CΛ2(0) of the sublattice Λ2 that has the 0 vector as its center. This set of points is

given by Λ1 ∩CΛ2(0). In cases where the sublattice Λ2 is not clean, that is, there

are border points falling on the envelope of CΛ2(0), the mapping of these points

is done in a systematic way ensuring that (v1 + Λ2)∪ · · · ∪ (vL + Λ2) = Λ1. Each

coset vi +Λ2 is to be associated uniquely with a different message mi, that is, all

points in the coset vi + Λ2 are equivalent and are associated to the message mi.

Thus, the transmitting rate R per sample is simply given by R = 1
N

log2(|Λ1/Λ2|).

For purposes of normalization and for reasons that will become clear later, let

us assume that Λ1 = α
k
Λ1

o where α ∈ R+, k ∈ Z+ and V ol(Λ1
o) = det(MΛ1

o
) = 1,

and also Λ2 = αΛ2
o, where Λ2

o is the corresponding sublattice of the normalized

lattice Λ1
o satisfying that V ol(Λ2

o) = det(MΛ2
o
) = L. Notice that under these

conditions, for any k ∈ Z+, Λ2 ⊂ Λ1. Let QΛ be the lattice vector quantizer

defined by the lattice Λ. The baseline system works as follows:

Encoding Procedure
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1. Select coset representative (symbol) vi associated with the message mi

which is intended to be transmitted.

2. Given the current known interference vector s, the vector signal that is

transmitted is given by:

x = (vi − s)−QΛ2(vi − s) = (vi − s) mod Λ2 (5.4)

Hence, what is transmitted is the quantization error resulting from quantizing

the signal (vi−s) with respect to the coarse sublattice Λ2. The channel adds the

interference s and the noise z vectors to the transmitted signal x, so the decoder

receives:

y = x + s + z = vi −QΛ2(vi − s) + z (5.5)

Notice that in the absence of the noise vector z, the vector y is just the coset

representative vi shifted by a point in the sublattice Λ2, resulting in a point that

falls in the same coset vi +Λ2. Since each message mi is associated with a unique

coset, the effect of the interference has been actually cancelled out.

Decoding Procedure

1. Quantize the received vector y with respect to the fine lattice Λ1, obtaining

b = QΛ1(y).
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2. The reconstructed vector v̂ is finally obtained performing a modulo-Λ2 op-

eration on the vector b:

v̂ = b−QΛ2(b) = b mod Λ2 (5.6)

In this construction, the fine lattice Λ1, for the given dimension, should be a

good (channel code) lattice in the sense that its coding gain should be as high as

possible. On the other hand, the power of the transmitted signal x is controlled

by the coarse sublattice Λ2 because it can be seen from the encoding procedure

that x ∈ CΛ2(0) and thus, the power spent by the transmitter is equal to the

power of the quantization noise that is generated from quantizing (vi − s) with

respect to Λ2.

It is easy to show that as the number L of independent signal points {vi} ∈

CΛ2(0) increases and assuming that these signal points are used equiprobably,

the distribution of the transmitted signal x becomes very well approximated by

an i .i.d. uniform N -dimensional distribution over the cell CΛ2(0) [80]. Under

this assumption, the power P per dimension will be given by:

P =
1

N

1

V ol(Λ2)

∫

C
Λ2 (0)

‖r‖2dr = G(Λ2)(V ol(Λ2))2/N = α2L2/NG(Λ2
o) (5.7)
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where G(Λ2) is the normalized second moment of the lattice quantizer QΛ2 and

which is defined as:

G(Λ) =

∫
CΛ(0)

‖r‖2dr

N(V ol(Λ))1+2/N
(5.8)

On the other hand, the supported rates per sample for this system are given

by:

R =
1

N
log2

(
V ol(Λ2)

V ol(Λ1)

)
=

1

N
log2

(
det(MΛ2)

det(MΛ1)

)
=

1

N
log2(k

NL) (5.9)

where L can take on all the possible positive index values given by all the possible

sublattices Λ2
o which are nested in the normalized lattice Λ1

o.

The probability Pe of decoding error is the same as for the vector Gaussian

channel where the lattice Λ1 is used for signaling, which can be approximated

using the classical union bound by:

Pe ' τ(Λ1
o)Q

(√
α2d2

min(Λ1
o)

4k2σ2
Z

)
(5.10)

where τ(Λ1
o) and d2

min(Λ1
o) denote the kissing number and the squared minimum

distance of the normalized lattice Λ1
o.

Suppose that we are given a power constraint P . There are several combina-

tions of values for α and the index |Λ1
o/Λ

2
o| which can be used to obtain the same
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power. The set of pairs {L, α} with L ∈ Z being a valid index and which give

rise to the same power are given by
{
L,
√

P
L2/N G(Λ2

o)

}
. Thus, Pe results in:

Pe ' τ(Λ1
o)Q

(√
1

k2L2/N

d2
min(Λ1

o)

G(Λ2
o)

P

4σ2
Z

)
= τ(Λ1

o)Q

(√
1

22R

d2
min(Λ1

o)

G(Λ2
o)

SNR

4

)

(5.11)

where it can be seen that since Λ1
o is normalized so that V ol(Λ1

o) = 1, the term

d2
min(Λ1

o) is equal to the coding gain of the lattice Λ1
o and on the other hand, the

term 1/G(Λ2
o) is proportional to the shaping gain of the lattice Λ2

o. Thus, the

lattice Λ2
o is acting as a shaping lattice and hence determining the power while

Λ1
o is controlling the performance against the noise.

Therefore, for a given constrained power P , if the power of the noise increases

(decreases) and thus the SNR decreases (increases), in order to keep the same

value for Pe, the rate R should be reduced (increased) by increasing (decreasing)

d2
min(Λ1) while keeping the nesting between the two lattices and without increas-

ing the generated power. The value of d2
min(Λ1) (and the rate) is controlled by

two parameters, the index |Λ1
o/Λ

2
o| = L and the positive integer k which keeps

the nesting property:

d2
min(Λ1) =

1

k2L2/N

P

G(Λ2
o)
d2

min(Λ1
o) (5.12)
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If the power P is to be kept constant, a decrease (increase) in L has to be compen-

sated by a corresponding increase (decrease) in the scale factor α. Notice from

(5.12) that by increasing (decreasing) the product k2L2/N , d2
min(Λ1) is decreased

(increased). For the particular case where all the basic lattices Λ1
o and Λ2

o are

restricted to be geometrically similar, the values of d2
min(Λ1

o) and G(Λ2
o) will not

change. In this case, for a target probability Pe of decoding error, one has to

find numerically, for each SNR, the best pair of integers (k, L) (L restricted to

be a valid index value) which better approximate Pe. Those optimal values will

determine using (5.9) the maximum possible rate R per sample that can be used

for that SNR. Once the optimal integers (k, L) have been found, in order to use

them in practice, they can be stored in a look-up table and there is no need to

search for them every time. For instance, if Λ1
o = A2, then, the possible values

for L are given by L = a2 − ab+ b2, a, b ∈ Z [30]. Substituting this value of L in

(5.9), one can obtain easily a curve Rmax(SNR). Similar curves can be obtained

for the important cases of Λ1
o = D4, E8 using the respective allowed values for L

in each case [30].
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5.3.4 Shaping through a trellis structure: Motivation and

proposed approach

There is a practical limitation for the baseline system in terms of the dimension

N that can be used because if Λ1 and Λ2 are chosen to be good lattices for each

dimension, the complexity of the quantizers QΛ1 and QΛ2 increases very impor-

tantly with the dimension N . Thus, it is not possible to efficiently approximate

well the ultimate shaping gain of πe/6 (1.53 dB) which is achieved by a uni-

form distribution over an N -dimensional sphere in the limit as N → ∞ whose

projection in any 2 dimensions gives a perfect Gaussian distribution (optimal

distribution for the Gaussian channel). This happens when G(Λ2
o) → 1

2πe
, which

is the normalized second moment of an N -dimensional sphere as N →∞.

The goal of shaping is therefore to achieve a non-uniform, Gaussian-like dis-

tribution, so as to reduce the average transmitting signal power while keeping

the same rate. This power reduction is the shaping gain. Using practical values

of dimension, the resulting shaping gain that can be achieved with the baseline

system is actually limited to a few tenths of a dB. On the other hand, in order

to achieve capacity, it is necessary to generate a gaussian distribution of power.

Eyuboglu and Forney [49] proposed to use a method called trellis precoding for

ISI channels where the dimension of the lattices (all of them cubic) is increased

through a convolutional shaping code.
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In our work, we propose a different way of performing shaping which can

be used either independently of the method in [49] or in conjunction with it.

For purposes of understanding, we first describe the classical trellis precoding

idea. Then, we propose a new approach which uses the concept of transmission

of information through a sequence of quantizers which are obtained by shifting

a basic coarse lattice quantizer. We also show later how this approach can be

combined and complemented with the trellis precoding method which uses a

sequence of signal points of the fine lattice instead of quantizers. In this last case,

as will be shown, a sequence of quantizers and signal points is jointly optimized

in order to achieve the lowest possible average power and the optimization is

performed using the tensor product of 2 trellises, one working on the signal points

(fine lattice) and the other one working on cosets of the coarse lattice.

Notice that in order to have a low complexity at the encoder, taking into

account the encoder procedure described in 5.3.3 where quantization is performed

with respect to the coarse lattice, it is interesting to use coarse lattices which are

as simple as possible, ideally, cubic lattices.

5.3.5 Trellis precoding idea

Let Λ1/Λ2/Λ3 be a lattice partition chain where |Λ1/Λ2| = 2nu and |Λ2/Λ3| = 2np.

Then, the set of 2nu+np lattice points belonging to Λ1 which are inside the Voronoi
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cell CΛ3(0) can be partitioned into 2nu non-overlapping sets (there are several

ways to choose these sets, that is, there is no one unique partition), each having

2np points of Λ1. The shaping operation introduced by Eyuboglu and Forney

consists of associating more than one signal vector with each binary message m.

This association is given implicitly by the lattice partition Λ1/Λ2/Λ3 so that each

particular message m is associated with a non-overlapping set Am of 2np points

in Λ1.

Let {mi1 ,mi2 , · · · ,miJ} and {s1, s2, · · · , sJ} denote the sequence of J bi-

nary messages to be transmitted and the corresponding sequence of interference

vectors. The goal is to minimize the average power P per dimension given by:

P =
1

NJ

m∑

j=1

‖xij‖2 =
1

NJ

J∑

j=1

‖(vij − sj)−QΛ3(vij − sj)‖2 (5.13)

where xij is the transmitting vector associated with the signal vector vij . The

most immediate way to perform shaping would be to choose, for each message mij

in the sequence, the signal vector vij in the set Amij
such that the individual

term ‖(vij − sj) − QΛ3(vij − sj)‖2 is minimized independently. However, this

decreases the tranmitting rate from (nu+np) bits per 2 dimensions to nu bits per 2

dimensions. Thus, this results effectively in a constellation expansion factor CER

of 2np. In the trellis precoding method introduced by Eyuboglu and Forney for

the ISI channel, the idea is to reduce the freedom by constraining the selection of

205



the signal vector points through a trellis in a sequence. In this way, the resulting

reduction in rate is smaller. The trellis structure is given by the trellis diagram

of a shaping linear convolutional code Cp with rate kp/np. In this trellis diagram,

there are 2kp branches emanating from each state and all the possible paths of

length J will determine all the possible choices of signal vectors which are valid

for the whole sequence of J binary messages.

Notice that each of the 2np signal points contained in a set Am can be labeled

uniquely by a binary np-tuple (b1, · · · , bnp). Let Gp(D) be the kp × np generator

matrix of Cp. Then, we can find a (non-unique) syndrome-former np × (np − kp)

matrix HT
p (D) such that GpH

T
p = 0. The important observation is that if

y(D) == (y1(D), · · · , ynp(D)) = {(y1
1, y

2
1, · · ·), · · · , (y1

np
, y2

np
, · · ·)} is a codeword

sequence of Cp, then, for any arbitrary sequence z(D) = (z1(D), · · · , znp(D)) =

{(z1
1 , z

2
1 , · · ·), · · · , (z1

np
, z2

np
, · · ·)} of binary np-tuples, it is satisfied that:

(z(D)⊕ y(D))HT
p (D) = z(D)HT

p (D) = s(D) (5.14)

where s(D) = (s1(D), · · · , srp(D)) = {(s1
1, s

2
1, · · ·), · · · , (s1

rp
, s2

rp
, · · ·)}, (rp = np −

kp) is called the syndrome sequence, which identifies uniquely one of the 2J(np−kp)

cosets3 the code Cp and z(D) and z(D)⊕y(D) are 2 sequences belonging to the

3The set of all possible 2Jnp binary sequences of length J can be decomposed into 2J(np−kp)

cosets, each having (in particular the code Cp) 2Jkp different binary sequences.
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same coset. This property allows to have a smaller reduction in rate by transmit-

ting a total of nu + rp bits per 2 dimensions (instead of only nu bits per 2 dimen-

sions) in the following way. A sequence of binary rp-tuples information bits will

be identified sequentially as the syndrome sequence s(D). An initial representa-

tive sequence belonging to the coset identified by this syndrome sequence will be

obtained by using any (np−kp)×np (feedbackfree) left inverse H−T
p (D) as z(D) =

s(D)H−T
p (D). For each codeword sequence y(D) (corresponding to one path in

the trellis), the sequence t(D) = z(D) + y(D) will belong to the same coset. Let

also w(D) = (w1(D), · · · , wnu(D)) = {(w1
1, w

2
1, · · ·), · · · , (w1

nu
, w2

nu
, · · ·)} be the

sequence of binary nu-tuples which determines the sequence of non-overlapping

sets {Ami
}. The sequence t(D) will determine a particular sequence of sig-

nal vectors belonging to the sequence of sets {Ami
} which are specified by the

sequence w(D). Thus, in order to minimize the average power, the codeword se-

quence y(D) must be chosen optimally by finding the optimal path in the trellis

corresponding to the minimum average power. This optimal path is found using

the Viterbi decoding algorithm with branch metrics given by the squared norm

of the signal vector v associated uniquely with each branch of the trellis defined

by Cp. Let {v′i1, v′i2 , · · · , v′iJ} be the sequence of signal vectors obtained at the

decoder after applying Λ1 and the modulo operation with Λ3. Notice that in the

case where there is no error decoding by Λ1, this sequence will be identical to the

sequence that was transmitted. First, the received sequence of signal vectors can

207



be mapped to a sequence of J binary (nu + np)-tuples giving a sequence of un-

coded bits w′(D) and a sequence t′(D), which assuming that no decoding errors

occurred, will be identical to the sequence t(D). In order to recover the rp bits

identifying uniquely the coset to which t(D) belongs to, the syndrome sequence is

obtained by applying the syndrome-former, that is, s′(D) = t′(D)HT
p (D). Since

the syndrome-former can be chosen to be feedbackfree, in case of some error de-

coding event by Λ1, the error propagation in the recovered syndrome sequence

s′(D) will be only finite.

5.3.6 Shaping through a sequence of quantizers

Let Λ1/Λ3/Λ4 be a lattice partition chain where |Λ1/Λ3| = 2nq and |Λ3/Λ4| = 2ns.

Let also the coset decomposition of Λ3 be given by Λ3 = Λ4
c1
∪ Λ4

c2
∪ · · · ∪ Λ4

c2ns

where Λ4
c1

= Λ4 and Λ4
ci

is the i-th coset. We denote by QΛ4
ci

the nearest neigh-

bor quantizer whose reconstruction points are given by the coset Λ4
ci
. Thus, all

the quantizers are (congruent) shifted versions of each other. We can associate

uniquely each of the 2ns binary ns-tuples with a different coset. In this case,

we associate with each message m one and only one signal vector v of the con-

stellation composed by Λ1 ∩ CΛ3(0), that is, no constellation expansion takes

place, as opposed to the trellis precoding method. Let {mi1 ,mi2 , · · · ,miJ} and

{s1, s2, · · · , sJ} again denote the sequence of J binary messages to be transmitted
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and the corresponding sequence of interference vectors. The shaping operation

consists of choosing the best sequence {QΛ4
cij

}J
j=1 of quantizers such that the

average power P per dimension is minimized:

Min{Q
Λ4

cij

}J
j=1

P =
1

NJ

J∑

j=1

‖(vij − sj)−QΛ4
cij

(vij − sj)‖2 (5.15)

Notice that if we allow to choose any the 2ns quantizers at each time instant j,

the minimization of the average power will be just the same as if we were using

the baseline system explained in Section 5.3.3 with the sublattice being Λ3. This

is obvious because the union of the cosets is the whole lattice Λ3, so finding the

closest point to (vij − sj) in the union of the cosets is equivalent to finding the

closest lattice point in Λ3. Thus, in this particular case, the overall minimization

for the J terms is equivalent to minimizing each term ‖(vij−sj)−QΛ4
cij

(vij−sj)‖2

independently. On the other hand, since this system is equivalent to the baseline

system, it will allow to transmit only nq bits per 2 dimensions generating a

uniform distribution of power in the Voronoi cell CΛ2(0).

The goal we want to achieve is to increase the bit rate while generating a

non-uniform distribution of power. The price to pay will be an increase in the

peak power, in other words, the non-uniform distribution of power will have a

somehow larger support. However, as we show next, this can be avoided by using

peak power constraints in the trellis search. The idea is to constrain the choices
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of the quantizers through the whole sequence by using a ks/ns shaping convolu-

tional code Cs where each path will correspond now to a particular sequence of

quantizers {QΛ4
cij

}. Thus, the shaping will be obtained by choosing among all

the possible paths in the code Cs the path that gives the lowest average power.

In this case, each branch of the trellis diagram of the code Cs will be associated

with a particular quantizer and comming out from each state, there will be only

2ks quantizers to choose from.

Let Gs(D) be the ks×ns generator matrix of Cs and HT
s (D) be a syndrome-

former. Following the same arguments as for the trellis precoding idea, a sequence

of binary rs-tuples (rs = ns−ks) information bits will be identified sequentially as

the syndrome sequence s(D) and similarly an intial representative sequence z(D)

will be obtained first using any (ns−ks)×ns (feedbackfree) left inverse H−T
s (D).

However, this time, the information bits contained in the syndrome sequence s(D)

will be transmitted through a constrained sequence of choices of quantizers. Each

codeword sequence y(D) associated with each path in the trellis will give rise to

a sequence t(D) = z(D) + y(D) of binary ns-tuples. Then, this sequence t(D)

will be mapped to a sequence of quantizers {QΛ4
cij

} using the previously agreeded

mapping from binary ns-tuples to the set of 2ns quantizers. Thus, in order to

minimize the average power, the optimal (path) codeword sequence y(D) has to

be found again using the Viterbi decoding algorithm with branch metrics given

by the corresponding quantization error. More specifically, if a particular branch
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in the j-th step of the trellis is associated with a quantizer QΛ4
cij

, its cost will be

just ‖(vij −sj)−QΛ4
cij

(vij −sj)‖2 where vij is the signal vector to be transmitted

at the time slot j.

At the decoder, the quantizer QΛ1 is applied to each received vector yij
at each

time instant, obtaining, under the assumption that no decoding error occurred, a

vector bij = vij −QΛ4
cij

(vij − sj). Clearly, the nq uncoded bits can be recovered

without any problem by using the modulo operation with respect to Λ3. We

now show how we can obtain the rs information bits per 2 dimensions. First,

we need to recover the ns bits identifying uniquely the quantizer QΛ4
cij

that was

chosen (from the Viterbi algorithm) at the encoder side. Notice that the vector

point (−bij ) = QΛ4
cij

(vij − sj) − vij is actually closest to the coset that was

chosen at the encoder, that is, Λ4
cij

, so that we can find the correct coset by

just obtaining first QΛ3(bij ) and then finding out to which of the 2ns cosets this

quantized vector belongs to. This coset Λcij
will be the closest to the vector bij

and it will give us the corresponding ns bits. In this way, we will recover the

whole sequence t(D) of binary ns-tuples. The syndrome sequence which contains

the the rs information bits will be recovered by applying the syndrome-former,

that is, s(D) = t(D)Hs(D)T . In the same way as in trellis precoding, in the case

of some error decoding event by Λ1, the error propagation will be finite.

In order to control the peak power in this scheme, one can simply impose

peak constraints during the Viterbi search, that is, if a certain branch in the
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trellis chooses a coset Λ4
cij

which gives rise to a power that is above a certain

preselected threshold, we associate an infinite cost to that branch so that this

branch will never be selected.

An important feature of this shaping scheme is that it does not make any use

of the constellation points (because there is no constellation expansion) in order

to perform the shaping. From a complexity point of view, it is preferable to have

a simple lattice Λ4.

5.3.7 Shaping through a joint sequence of constellation

points and quantizers

Let Λ1/Λ2/Λ3/Λ4 be a lattice partition chain where all the parameters are the

same as in Sections 5.3.5 and 5.3.6. Now, we combine the two methods explained

previously by allowing to choose jointly from a sequence of signal points and

cosets.

Let Tp and Ts denote the trellis associated with the convolutional codes Cp

and Cs respectively. Let Tp have states v1, · · · , v2bp and Ts have states ω1, · · · , ω2bs .

The combination of the two methods is performed through the tensor product

Tp ⊗ Ts of the two trellises. The tensor product Tp ⊗ Ts is a trellis with 2bp+bs

states vn ⊗ ωm, n = 1, · · · , 2bp, m = 1, · · · , 2bs. There is a transition between
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states vn⊗ωm and vt⊗ωr in Tp⊗Ts if and only if there exist transitions between

vn and vt in Tp and between ωm and ωr in Ts.

It is important to note that in the process of encoding and decoding, there

is no need to actually implement the trellis Tp ⊗ Ts, with 2bp+bs states but one

only needs to perform the operations for each time slot in two stages, one stage

(sub-transition) using Tp and the other stage (sub-transition) using Ts. Thus, as

usual, the survival path in the Viterbi decoding algorithm is obtained through a

sequence of time slots, but in this case, in each time slot, the decoding is done

succesively in two stages instead of one.
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0 00⁄
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Figure 5.1: Trellis Diagram representing the four-state Ungerboeck code

Example Consider the case where Tp = Ts = TU , where TU denotes the four-

state Ungerboeck’s trellis code where G(D) = [1 +D2, 1 +D+D2] and H(D) =
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[1+D+D2, 1+D2]. The corresponding trellis diagram is illustrated in Fig. 5.1.
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Figure 5.2: (a) Shaping through the fine lattice (channel code); (b) Shaping
through the coarse lattice (source code).

Fig. 5.2 shows an example where Λ1 = A2, Λ2 = 2A2, Λ3 = 4A2 and Λ4 is

a rectangular lattice which is a sublattice of Λ3 with index |Λ3/Λ4| = 4, where

the Voronoi cells of Λ3 and Λ4 are shown. It can be seen that CΛ3(0) = |Λ1/Λ4|

contains 16 constellation points (thus, the original rate in a baseline system would

be 4 bits per 2D symbol), which are divided into 4 sets, each of them with 4

constellation points that we have called D0, D1, D2 and D3 Fig. 5.2(a). Each

set is identified with a different colour. On the other hand, we have |Λ3/Λ4| = 4

cubic quantizers corresponding to the 4 cosets of the coarsest lattice Λ4 with

respect to Λ3. The i-th coset is indicated in Fig. 5.2(b) with the label Ci.
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For this example, we have that kp = ks = 1, np = ns = 2 and bs = bp = 2

(4 states). The total transmitting rate per 2D symbol will be 4 (no shaping) -

1 (trellis precoding) + 1 (our approach) = 4 bits/symbol, which means that we

keep the same rate as the original. The peak power can be controlled so that

a gaussian-like power distribution is generated with support being the circle in

which the hexagon in Fig. 5.2 is incribed, thus, without having an increase in

the peak power. Therefore, the peak constraint in the Viterbi search will be the

covering radius of this hexagon. Notice that the lattice Λ4 has been choosen to be

rectangular so that the complexity of the quantization operations at the encoder

is lower than if we were quantizing with a more complicated lattice.

The complete evaluation of our designs has to be done by simulation and

is the object of our ongoing work. Preliminary results show shaping gains over

the corresponding baseline version of around 1dB and more depending on the

complexity of the trellises and the decoding window size that are used [12].

5.4 Channel lattice decoding in fading channels

Previous work [19] on multidimensional modulation schemes for the fading chan-

nel show that good lattices can be obtained as rotated versions of lattices which

are good for the Gaussian channel. Currently, there are not very efficient (low
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complexity) maximum-likelihood (minimum distance assuming equiprobable sym-

bols) decoding algorithms for these lattices assuming a coherent (perfect channel

state information) signal demodulation system. The fastest current decoding al-

gorithm performs a full search within a certain sphere whose radius has to be

chosen adaptively depending on the amount of fading and noise that are present

[120]. The obvious advantage of this system with respect to a complete full search

is that it never tests vectors which are outside the chosen sphere. However, there

are several problems in this algorithm: a) heuristic rules are given in order to

choose the smallest possible radius, which if not properly chosen, gives rise to a

decoding failure, b) the complexity changes abruptly when the fading coefficients

change significantly and c) most importantly, the average decoding complexity of

this algorithm is very far from the complexity that takes place in the minimum

distance decoding algorithms developed for the Gaussian channel.

The difficulty comes from the fact that the effect of the fading is to com-

press or enlarge independently each component of the lattice and the maximum-

likelihood decoding now amounts to performing minimum distance decoding in

this distorted space. The decoding algorithms developed for the Gaussian chan-

nel are based on certain algebraic properties of the original undistorted lattices.

These algebraic properties are destroyed in the presence of fading and thus, these

fast algorithms can not be used.
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We think that it would be useful to make use of the decompositions we have

found in [102] and which are described in Chapter 3 as an intermediate step to

solve this problem. A surprising property that we have found in many of the

decompositions considered in Chapter 3 is that the sum of lattices turns out to

be equal to the union of the same lattices!. In order to clarify, let us consider

a simple example where this property happens. As shown in Chapter 3, we

can write the hexagonal lattice A2 as A2 = Λ1 ∩ Λ2 ∩ Λ3, where Λ1, · · · ,Λ3 are

rectangular lattices. Notice that taking duals and taking into account that A2

and Λ1, · · · ,Λ3 are all modular lattices4, it is easy to see that we can write A2 also

as the sum of three rectangular lattices Λ′1, · · · ,Λ′3 which are actually congruent

to Λ1, · · · ,Λ3. However, the following additional properties can also be proved:

A2 = Λ′1 + Λ′2 + Λ′3 = Λ′1 + Λ′2 = Λ′1 + Λ′3 = Λ′2 + Λ′3 = Λ′1 ∪ Λ′2 ∪ Λ′3

A2RD = Λ′1RD + Λ′2RD = Λ′1RD + Λ′3RD = Λ′2RD + Λ′3RD

A2RD = Λ′1RD ∪ Λ′2RD ∪ Λ′3RD

(5.16)

where R represents a rotation and D is a diagonal matrix containing the fading

coefficients, assuming that the fading is acting independently in each coordinate5.

Thus, A2RD represents a lattice which is obtained by first rotating A2 and then

4As defined in Chapter 3, a modular lattice has the property that its dual lattice is geomet-
rically similar to it.

5This can be achieved by using a signaling system with an interleaver of sufficiently large
depth
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applying the fading on the resulting lattice. The important property is that it

is possible to decompose the lattice A2RD as the union of lattices of the type

ΛRD with Λ being a rectangular or cubic lattice. Similar properties hold also for

many other decompositions that we have obtained, such as the decompositions

for D4 and E8.

Therefore, since many of our decompositions can express each rotated lattice

as a union of rotated cubic lattices (rotated QAM constellations) we can reduce

in many cases the problem of decoding with respect to a faded complicated lattice

to the problem of decoding lattices of the form ΛRD with Λ being a cubic lattice,

which is a much more constrained lattice (hence, hopefully, easier to decode) than

the faded original complicated lattice. Using the union decomposition in (5.16),

the decoding with respect to the complicated will be obtained by decoding with

respect to the lattices in the union and taking the best candidate, that is, the

one that gives the smallest distance.

Therefore, we propose to study new fast decoding algorithms for the particular

simplified case of having only cubic constellations, which we think is a problem

that can be solved much more efficiently than in the case of having fading over

a more complicated lattice. In the future, fast decoding algorithms for the case

of non-coherent detection should be also elaborated using a similar simplifying

intermediate step. Finally, this work may be also useful for decoding certain types

of space-time codes (e.g. space-time codes obtained by having several transmit
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antennas using QAM signaling) [43] where the decoding has to be done with

respect to an effective lattice which depends on the transfer matrix between the

transmit and receive antennas.

5.5 Shiftable filter banks and their different

applications

We can identify several issues to be explored:

1. It would be very convenient to try to find new designs (or optimization

methods) of digital steerable filter banks which satisfy more closely the

perfect reconstruction condition than the designs we have used in this work.

Another possibility is to perform filtering in the frequency domain which

allow filters to be designed analytically. On the other hand, we should use

also filter banks with a smaller redundancy factor than 4J
3

(J is the number

of basic filters (orientations) because with the current design, even without

oversteering, we have already a large amount of redundancy. The designs

provided by Manduchi in [79] allow to decrease the redundancy factor but

are based on a completely numerical approach using the SVD decomposition

of matrices, which do not allow to have completely analytical expressions

for the different elements (e.g., steering functions, etc...). A completely new
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idea which is worth exploring is reduce the steerability requirement so that

instead of allowing to perform steerability to any angle φ, we only require

to satisfy steerability for a finite (sufficiently large) number of equispaced

angles (discrete steerability). This relaxation of the steerability condition

may allow for perfect reconstruction designs which can be manipulated in

the polyphase domain (as it has been usually done traditionally in wavelet

filter design), resulting in a set of filters that would perform better than the

actual designs.

2. Some efficient algorithm should be found in order to achieve as good refine-

ment (reduction of uncertainty in the angular domain) as possible between

the different regions of uncertainty generated by the different sets of basic

angles, when we add more and more orientations. Since it is not computa-

tionally feasible to consider all the possible combinations of basic angles, it

should be interesting to find a (suboptimal) greedy approach with a much

lower complexity and which gives good enough results of refinement.

3. It would be interesting to design embedded steerable transforms. For in-

stance, given a steerable transform with J1 basic angles, it would be inter-

esting to design a steerable transform with J2 > J1 basic angles such that

we can obtain the J2 basic oriented subbands for the second steerable trans-

form by using the J1 basic subbands from the first steerable transform and
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some additional information equivalent in size to J2 − J1 subbands in each

corresponding level. This would be very useful in order to achieve succesive

refinement in angle, which would be applicable for remote content-based im-

age retrieval applications where it is necessary to have a certain scalability

(e.g. the transmission bandwidth of the channel varies).

4. It should very interesting to study the design of filter banks which are steer-

able under the scaling group, that is, g(τ) f(x) = f(2−τx). A filter bank

like this would be very useful for instance in audio and speech applications

(as well as in images), since it would allow to switch between different time-

frequency tilings without having to refilter the signal with a different filter

bank every time. With just one filtering operation, we would be able to ob-

tain many different time-frequency tilings of the same signal, which would

be very useful for both analysis and synthesis of signals. Although some

theoretical analysis based on Lie theory [108, 110] has been developed in the

context of functions steerable in scale, there does not exist yet a practical

perfect reconstruction digital filter bank design which is steerable in scale.

5. Study the idea of using oversampled steerable transforms in the context

of Multiple Description coding for images where each description would be
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composed by a subset of orientations and/or scales and where the steer-

ability property would be used explicitly to refine the information as the

number of orientations and/or scales that are received increase.

6. As shown by the average percentages of correct retrieval in Chapter 4,

it is necessary to treat differently textures that have clear predominant

orientations and textures that are isotropic in energy. For textures with

predominant orientations, the treatment we give in Chapter 4 seems to

be appropiate. For isotropic textures such as ”sand”, the results show, as

expected, that there is no real gain by using steerable transforms instead of

regular wavelet transforms. Therefore, a different method should be used

here. One possibility is to use a different similarity measurement which

do not perform rotation of the features but takes also into account the

stochastic nature of the texture, in addition to the energy-based features.

For instance, one could use a joint stochastic model for the subbands where

the subbands are fitted (using the Expectation-Maximization algorithm)

with certain assumed probability density models and combine it with the

energy based features. On the other hand, there are also some textures such

as “bark” which are clearly inhomogeneous for which intutively, a global

energy-based feature may not be the best option. One possibility for this

is to subdivide further the texture blocks since in a local neighbourhood
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the texture becomes more homogeneous. However, this will increase the

number of features.

7. We have not addressed the very important problem of finding fast algorithms

to obtain the optimal angle θ∗ in (4.24) which is necessary to perform the

similarity measurement. In the case of J = 2, it is easy to show that the

angle θ∗ can be found analytically because the matrix R(θ) in (4.24) is a

simple 2× 2 rotation matrix in the plane and the minimization problem in

(4.24) reduces to solving an equation of the type ay4 + by2 + c = 0 where a,

b and c are known and depend only on the correlation matrix C. For J > 2

the minimization problem in (4.24) does not reduce to an easily solvable

equation. However, it can be easily shown that curve D(θ) can have at

most J local extrema in the domain [0 π[. In addition to this, since we

know the steering functions, we have knowledge about the speed of change

in the slope of the curve D(θ) across θ. We should use these facts in order

to find a simple iterative search method (e.g. gradient-descendent search)

to obtain a sufficiently good approximation to θ∗.

8. We have not used any training-based classifier for the retrieval process. No-

tice that in our experiments, given a query, we simply compared (aligning)

the features of the query with the features of each of the texture samples

in the database. In order to accelerate the retrieval process (reduce the
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complexity in the retrieval), it is more desirable to have a Tree-Structure

(TS) classifier which reduces very importantly the complexity of the system.

This TS classifier is designed by training and in our case, it will trained us-

ing a sufficient large number of texture samples, all of them oriented at the

non-rotated angle of 0 degrees. In the design of the TS, tree is grown in a

greedy manner, where the splitting of the nodes is done according to some

criterion, depending on which, a balanced or unbalanced tree is obtained.

Each node of the tree will contain a representative set of features and given

a query, the features of the query will be aligned with those of the node

and a decision will be taking regarding which branch downwards is taken.

Such a system (in particular, an unbalanced tree) although using wavelet

energy-based features and not taking into account the rotation invariance

problem, has been used by Hua and Ortega in [129, 88] where feature quan-

tization is also taken into account. These TS schemes have been actually

used previously for vector quantization applications. As a final comment, it

would be convenient to test our schemes over a larger set of texture samples,

including more classes of textures and more texture samples per texture.

[93, 94].

9. In the presence of a remote content-based image retrieval application where

it is necessary to quantize the features and thus, some error will be incurred,
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it would be interesting to study whether it is better, from a recognition point

of view and for a given total bit rate budget, to increase the number of quan-

tized correlation matrices (obtained from different sets of basic angles) that

are used per level, instead of using just one quantized correlation matrix

(calculated from only one set of J basic angles) with the same total bit

rate cost. Notice that in Chapter 4, we have analyzed the trade-off between

oversteering and resolution (accuracy) at the transform coefficient level, but

we have not analyzed this trade-off when we use features calculated over

more than J angles and we quantize them.

5.6 Quantized overcomplete expansions as error

correction codes over R or C

Previous work by several researchers has pointed out that there are strong ties

between digital signal processing and error correcting codes [18, 105, 53, 127].

systems but now over GF (q). All the basic algebraic properties (e.g. calculation

of determinants, Fourier transforms, inverses, convolution theorem) that are used

in error correction codes such as Reed-Solomon codes hold just as well in any field

and thus, are valid also over R and C. This is because only the abstract structure

of a field is used in all the analysis.
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This is clearly seen by illustrating how a Reed-Solomon code can be defined

in any field F though they have been used mostly in finite fields. A parallel

argument for BCH codes can be made in exactly the same way but for the sake

of simplicity we restrict to Reed-Solomon codes. Given a vector x composed

by k information symbols in the generic field F of the code, a Reed-Solomon

codeword is formed by appending n− k new symbols called parity symbols. The

codeword has length n and is constructed so that it is able to correct up to

t = n−k
2

symbol errors. A Reed-Solomon code can be defined using the language

of Fourier transforms. Let c = [c0, . . . , ck−1] be a vector of length n > k over a

generic field F . The Discrete Fourier transform C = [C0, . . . , Cn−1] in F is given

by:

Cj =
n−1∑

i=0

ωijci j = 0, . . . , n− 1 (5.17)

where ω is an nth root of unity in the field F . The t-error correction (n, n− 2t)

(k = n − 2t) Reed-Solomon code is defined as the set of all vectors c such that

Cj = 0 for j = 0, . . . , 2t− 16. One way of finding the codewords is by performing

encoding in the Fourier domain, that is, given a k-dimensional input vector of

symbols, the corresponding codeword c is obtained as follows:

c = W−1
n PW kx (5.18)

6Actually, we can set to 0 any consecutive 2t transform coordinates
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We first take a length-k DFT (denoted by W k) (invertible operation), then we

perform a zero-padding of 2t consecutive positions, represented by a zero-padding

matrix, and finally we project back to time domain by taking an IDFT of length n

(denoted by W−1
n ). Thus, a Reed-Solomon code can be viewed as a technique of

digital signal processing that will protect a time-discrete waveform from impulsive

noise or burst noise.

The only difference that appears (with respect to the case when F is a Galois

field) when working over R or C is that prior to transmission through a channel,

it is necessary to apply a quantizer Q over c, obtaining ĉ = Q(c), and its repre-

sentation in bits is sent through the channel. It is important to realize that the

whole transform W −1
n PW k in (5.18) can be viewed as a particular overcomplete

transform of redundancy r = n
k

and after quantization is included, what we have

is a particular quantized overcomplete expansion. When F is a Galois field, the

quantization is performed before applying error correction, thus there is a clear

separation between source coding and channel coding. On the other hand, the

real (or complex) case can be viewed more as a joint source-channel coding. If

ĉ′ is the received codeword, then there are two sources of distortion, namely, the

quantization and the channel noise.

Regarding the decoding procedure of Reed-Solomon codes, it can also be

shown that it actually consists of a spectral estimation problem, which is very
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usual in digital signal processing (e.g. deconvolution problem, spectral estima-

tion, design of autoregressive filters, etc...). Algorithms for spectral estimation

often require the solution of a Toeplitz system of equations and fast algorithms for

finding the solution of a Toeplitz system of equations have been given by Levin-

son [76], Trench [114] and Durbin [48]. These algorithms are very well known

within the field of digital signal processing. In the error-correction codes litera-

ture there are also algorithms, namely, the Berlekamp-Massey algorithm [17] and

the Sugiyama method [103], which apply the Euclidean algorithm to find also

the solution of Toeplitz systems of equations. These later algorithms have been

widely used in finite fields but they are valid in any field F .

New ideas for research The overcomplete transform T = W −1
n PW k in

(5.18) is just a very particular overcomplete transform. In `2(Z) for instance,

there are many different possible designs of oversampled filter banks. As an

example, the first candidates that one can think of are Weyl-Heisenberg (Gabor)

frames, which are basically windowed fourier exponentials. Complete designs of

these overcomplete filter banks have been given by Cvetković in [38]. Using z-

transform notation and also representing oversampled filter banks and signals in

the polyphase domain, we have that one could in principle encode using:

cp(z) = [G(z)p]n2×n1
[P p(z)]n1×n1

[G(z)p]n1×kxp(z) (5.19)
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where n1 > k, n2 < n1 and n2 > k, introducing n2 − k redundant symbols and

where G(z)p is a synthesis oversampled filter bank (polyphase matrix) related to

H(z)p, an analysis oversampled filter bank. P p(z) will perform some operation to

introduce structure in the redundancy as the zero-padding matrix. It should be

interesting to study: a) how to design the best set of oversampled filter banks and

the best matrix P p(z) as a function of the statistics of the source and the channel

in order to achieve good error correction performance. Another important issue to

be investigated is the design of the quantizer which is applied to the coefficients

of the resulting overcomplete transform. Its design should take into account

both the statistics of the source and the conditions of the channel. Similarly, a

decoding technique resembling and generalizing the spectral estimation method

used for the DFT should be studied again taking into account the use of arbitrary

oversampled filter banks.

These issues have not been investigated to date.
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[41] Z. Cvetković and I. Daubechies. Single-bit oversampled A/D conversion
with exponential accuracy in the bit-rate. In Proc. of Data Compression
Conf., pages 343–352, 2000.
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Appendix A

A.1 Proof of Fact 1

Since Λs is a sublattice of Λ1, Λs is a subgroup of the additive group Λ1, and
the result follows directly by group theory. The periodicity is determined by the
subgroup and therefore the minimal periodic unit is given by the tiling contained
in CΛs

o , the fundamental polytope associated with the sublattice Λs. Since the
subgroup structure is true for any dimension N , the periodicity property is also
true for any dimension N 2.

A.2 Proof of Lemma 1

Let MΛj = AΛjMΛ1 and consider the matrix AΛj given by:

AΛj =

(
1

dj
1

0

0 1

dj
2

)(
kj

11 kj
12

−kj
21 kj

22

)
(A.1)

whose inverse is equal to:

(AΛj )−1 =
1

kj
11k

j
22 + kj

12k
j
21

(
kj

22d
j
1 kj

12d
j
2

−kj
21d

j
1 kj

11d
j
2

)
=

1

Dj

(
tj11 tj12
tj21 tj22

)
(A.2)

where tjlm ∈ Z and Dj ∈ Z+ is the denominator that is left after all the common
factors have been canceled out. For each j we define the lattice Λj′ with generator
matrix given by:

MΛj′ = Dj(AΛj)−1MΛj = Dj(AΛj )−1AΛjMΛ1 = DjMΛ1 (A.3)

Notice that Λj′ ⊂ Λj is a sublattice of Λj because the matrix Dj(AΛj )−1 has
integer entries. After calculating MΛj′ ∀ j = 1, · · · , r, we define D as D =
l.c.m(D1, D2, · · · , Dr) and the lattice Λo with generator matrix MΛo = DMΛ1 ,
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which means that Λo is an integer scaling of Λ1. Thus, we have that Λo ⊂ Λj′ ⊂
Λj ⊂ Λ1, ∀ j = 1, · · · , r. This implies clearly that Λo ⊂ (Λ1 ∩ Λ2 ∩ · · · ∩ Λr) and
therefore, Λo is a sublattice of the coincidence site lattice ΛCSL .

A.3 Proof of Lemma 2

Since ΛCSL is the finest sublattice of all the lattices Λj, j = 1, · · · , r, if we
consider any cell CCSL

i , the relative positions of the lattice points {vj
i} (vertices

of the cells associated with Λj) for each lattice Λj, which are inside the cell CCSL
i ,

these positions are always the same independently of which cell CCSL
i is chosen.

This immediately implies that the structure of the resulting EV Q is a periodic
repetition of the structure of cells that is inside the fundamental polytope CCSL

o

of the CSL .

A.4 Proof of Fact 2

The proof follows in a straightforward manner by direct calculation from the
definition of sublattice, which implies that

(
c1∆

1
1 0

0 c2∆
1
2

)(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
=

(
k11∆

1
1 k12∆

1
2

−k21∆
1
1 k22∆

1
2

)
(A.4)

Hence, a set of sufficient conditions is given by:

c1∆
1
1[cos(θ), sin(θ)] = [k11∆

1
1, k12∆

1
2]

c2∆
1
2[− sin(θ), cos(θ)] = [−k21∆

1
1, k22∆

1
2], k11, k12, k21, k22 ∈ Z

(A.5)

If we use the variable β =
∆1

2

∆1
1

and simplify the previous equations, we get that:

c1 cos(θ) = k11 (A.6)

c1 sin(θ) = βk12 (A.7)

−c2β sin(θ) = −k21 (A.8)

c2 cos(θ) = k22 (A.9)

Without loss of generality, we consider the case 0 < θ < π
2
. This constrains the

signs of all the integers k11, k12, k21 and k22 to be positive. Solving the previous
equations for β and θ results in:

β =
√

k11k21

k12k22
, tan(θ) =

√
k12k21

k11k22

(A.10)
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The values for c1 and c2 follow from using (A.6) and (A.7).

A.5 Geometric constraints on the stepsizes

∆1
1

∆2
1

∆1
2

∆2
2

θ

(a)

∆1
1

∆2
1

∆1
2

∆2
2

θ

(b)

Figure A.1: 2 Limiting cases for the stepsizes ∆2
1 and ∆2

2 of the quantizer Q2.

Let us consider for simplicity the case of r = 2. The approach we have followed
is to constrain the possible stepsizes ∆2

1, ∆2
2 to have values between the 2 limiting

cases that happen when the Voronoi region of one quantizer is totally inside of
a Voronoi cell of the other quantizer, as shown in Figure A.1. These 2 limiting
cases establish upper and lower bounds for the pair (d2

1, d
2
2) such that all pairs

in between will satisfy the property. By using elemental trigonometry, we can
calculate upper and lower bounds for the pair (d2

1, d
2
2).

From Fig. A.1(a), we get that:

∆1
2 sin(θ) + ∆1

1 cos(θ) ≥ ∆2
1 =⇒ d2

1 ≥ k2
11

k2
22

+k2
12

k2
21

k2
21

+k2
22

∆1
1 sin(θ) + ∆1

2 cos(θ) ≥ ∆2
2 =⇒ d2

2 ≥ k2
11

k2
22

+k2
12

k2
21

k2
11

+k2
12

(A.11)

which gives lower bounds for d2
1 and d2

2.
In the same way, from Fig. A.1(b), we get that:

∆2
1 sin(θ) + ∆2

2 cos(θ) ≥ ∆1
2 =⇒ k2

12

d2
1

+
k2
22

d2
2

≥ 1

∆2
2 sin(θ) + ∆2

1 cos(θ) ≥ ∆1
1 =⇒ k2

11

d2
1

+
k2
21

d2
2

≥ 1
(A.12)
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which gives upper bounds for d2
1 and d2

2.
For instance, in Example 1, the pairs (d2

1, d
2
2) are constrained by:

d2
1 ≥ 7

4
, d2

2 ≥ 7
3

2d2
2 + d2

1 ≥ d2
1d

2
2, 3d2

1 + d2
2 ≥ d2

1d
2
2

(A.13)

which limits the possible values of (d2
1, d

2
2) to {(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (3, 3)}.

A.6 Proof of Lemma 3

By adding and subtracting (2.39) and (2.40), and doing the same for (2.41) and
(2.42), we get the following equivalent set of equations:

∆2
1 cos(θ) =

q1 + q2
2

∆1
1 = q′1∆

1
1 (A.14)

∆2
2 sin(θ) =

q2 − q1
2

∆1
1 = q′2∆

1
1 (A.15)

∆2
1 sin(θ) =

q3 + q4
2

∆1
2 = q′3∆

1
2 (A.16)

∆2
2 cos(θ) =

q3 − q4
2

∆1
2 = q′4∆

1
2 (A.17)

with q′1, q
′
2, q

′
3, q

′
4 ∈ Q

Assume that (A.14), (A.15), (A.16) and (A.17) are satisfied. Manipulating these
equations, we get:

Dividing (A.14) and (A.15), tan(θ) =
∆2

1

∆2
2

q′
2

q′
1

(A.18)

Dividing (A.16) and (A.17), tan(θ) =
∆2

2

∆2
1

q′
3

q′
4

(A.19)

Dividing (A.14) and (A.17),
∆2

1

∆2
2

=
∆1

1

∆1
2

q′
1

q′
4

(A.20)

Dividing (A.15) and (A.16),
∆2

1

∆2
2

=
∆1

2

∆1
1

q′
1

q′
4

(A.21)

Solving these equations and expressing all the stepsizes in terms of ∆1
1 we obtain:

tan(θ) =

√
q′2q

′
3

q′1q
′
4

(A.22)

∆1
2 = β∆1

1 =

√
q′1q

′
2

q′3q
′
4

∆1
1 (A.23)
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∆2
1 =

q′1
cos(θ)

∆1
1 (A.24)

∆2
2 =

√
q′1q

′
3

q′2q
′
4

∆2
1 =

q′4
cos(θ)

√
q′1q

′
2

q′3q
′
4

∆1
1 =

q′4
cos(θ)

β∆1
1 (A.25)

If we compare (A.22), (A.23), (A.24) and (A.25) with (2.19) and (2.20), we

have obtained exactly the same equations with q ′1 =
k2
11

d2
1

, q′2 =
k2
21

d2
2

, q′3 =
k2
12

d2
1

and

q′4 =
k2
22

d2
2

. Since the final set of equations is equivalent to the first 4 equations

(2.39), (2.40), (2.41) and (2.42), it is clear that this Lemma is also true in the
other direction .

A.7 Proof of Theorem 2

Without loss of generality, we can assume a quantizer Q1 associated with a lattice
Λ1 where F 1 = I2x2 and MΛ1 = diag[∆1

1,∆
1
2]. A general quantizer Q2 can be

associated with a lattice Λ2. We denote by x|i the components of x expressed in
the basis {ϕi

1,ϕ
i
2}, i = 1, 2, where i = 1 indicates, without loss of generality, the

natural basis. In order to find an inconsistent cell, we consider the vertices of Λ2.
Any vertex can be written as:

ω = k1(∆
2
1ϕ

2
1 + ∆2

2ϕ
2
2) + k2(∆

2
1ϕ

2
1 −∆2

2ϕ
2
2) k1, k2 ∈ Z (A.26)

The components of these lattice points are:

ω|1 =

(
k1(∆

2
1 cos(θ)−∆2

2 sin(θ)) + k2(∆
2
1 cos(θ) + ∆2

2 sin(θ))
k1(∆

2
1 sin(θ) + ∆2

2 cos(θ)) + k2(∆
2
1 sin(θ)−∆2

2 cos(θ))

)
, k1, k2 ∈ Z

(A.27)
Notice that the 2 terms in the first component coincide with the left-hand-sides
of (2.39) and (2.40) and the 2 terms in the second component coincide with the
left-hand-sides of (2.41) and (2.42). Applying Lemma 3, if Q2 is not constructed
so that the EV Q is a periodic quantizer, that is, if MΛ2 6= diag[1/d2

1, 1/d
2
2]MSΛ2,

with SΛ2 being a geometrically scaled-similar sublattice of Λ1, at least one of the
following equations is not satisfied:

(first component in w) ∆2
1 cos(θ)−∆2

2 sin(θ) = q1∆
1
1 (A.28)

(first component in w) ∆2
1 cos(θ) + ∆2

2 sin(θ) = q2∆
1
1 (A.29)

(second component in w) ∆2
1 sin(θ) + ∆2

2 cos(θ) = q3∆
1
2 (A.30)

(second component in w) ∆2
1 sin(θ)−∆2

2 cos(θ) = q4∆
1
2 (A.31)

where q1, q2, q3, q4 ∈ Q
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that is, at least one qi 6∈ Q. We now recall one of the properties of the mod

∆1
1

∆2
1

∆1
2

∆2
2

θ

µ

ε1

v1

∆1
1

∆2
1

∆1
2

∆2
2

θ

µ

v2
x1

x2 ε2

δ δ

Figure A.2: Case 1 (Case 2 is Case 1 rotated 90 degrees) in the proof of the
Theorem. It is not possible (if the EV Q is not periodic) to keep linear consistency
simmultaneously in the 2 (small) EVQ cells shown.

function, which is that if z = µv where µ 6∈ Q and v ∈ R, then {kz mod v,
k ∈ Z} =]0, v[. In the case of having z = qv with q ∈ Q, then, the set {kz mod v,
k ∈ Z} is composed only of a finite number of distinct values. This gives 2 cases:
Case 1: if at least one of the equations (2.39),(2.40) is not satisfied, then the
first (horizontal) component in (A.27) of the lattice points of Λ2 can have an
arbitrary value (modulo ∆1

1) (see Fig. A.2) and Case 2: if at least one of the
equations (2.41),(2.42) is not satisfied, then the second (vertical) component in
(A.27) can have an arbitrary value (modulo ∆1

2). Notice that Case 1 and Case
2 are equivalent because the only difference between them is which coordinate
fails to have a finite number of different values. Case 1 is the one that is actually
represented graphically in Fig. A.2, and Case 2 corresponds to the Fig. A.2
rotated 90 degrees. Thus, the proof of Case 1 and Case 2 is exactly the same,
and we can consider only Case 1 without loss of generality.

Thus, consider that at least one of the equations (2.39),(2.40) is not satisfied
and also let first both (2.41),(2.42) be satisfied, thus allowing a finite number of
values (modulo ∆1

2) in the second component.
Then, if we apply the previous property of the mod function, we can find a

vertex v of Λ2 of the form:

v|1 =

(
Ix∆

1
1 + γ
y

)
, ∀γ ∈]0,∆1

1[, where Iy∆
1
2 ≤ y < (Iy + 1)∆1

2 , Ix, Iy ∈ Z

(A.32)
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Consider now the following 2 input vectors x1 and x2 defined as follows:

x1|1 = v1|1 −
(
δ
0

)
=

(
Ix1

∆1
1 + ε1 − δ
y1

)

x2|1 = v2|1 +

(
δ
0

)
=

(
(Ix2

+ 1)∆1
1 − ε2 + δ

y2

)

where
v1 = v{γ=ε1}, v2 = v{γ=∆1

1
−ε2},∆

1
1 � ε1, ε2 > 0,∆1

1 � δ > 0, δ < min(ε1, ε2),

Iy1
∆1

2 ≤ y1 < (Iy1
+ 1)∆1

2, Iy2
∆1

2 ≤ y2 < (Iy2
+ 1)∆1

2

(A.33)
where Ix1

, Ix2
, Iy1

, Iy2
∈ Z.

If we apply the quantizers Q1 and Q2 to the input vectors x1 and x2 and then
take the average, the final reconstructions x̂1 and x̂2 given by the EV Q are:

x̂1|1 =

(
Ix1

∆1
1 +

∆1
1

4
− ∆2

1
cos(θ)

4
− ∆2

2
sin(θ)

4
+ ε1

2
Iy1

∆1
2

2
+

∆1
2

4
− ∆2

1
sin(θ)

4
+

∆2
2
cos(θ)

4
+ y1

2

)
(A.34)

x̂2|1 =

(
Ix2

∆1
1 +

3∆1
1

4
+

∆2
1
cos(θ)

4
+

∆2
2
sin(θ)

4
− ε2

2
Iy2

∆1
2

2
+

∆1
2

4
+

∆2
1
sin(θ)

4
− ∆2

2
cos(θ)

4
+ y2

2

)
(A.35)

In order to be able to express the constraints to satisfy consistency along the
2 directions determined by the second basis {ϕ2

1,ϕ
2
2}, we also express x̂1 and x̂2

with their components given with respect to this second basis (this is actually
equivalent to a clockwise rotation of the plane by an angle of θ):

x̂1|2 =

(
Ix1

∆1
1 cos(θ) +

Iy1
∆1

2
sin(θ)

2 +
∆1

1
cos(θ)
4 +

∆1
2
sin(θ)
4 − ∆2

1

4 + sin(θ)y1

2 + cos(θ)ε1
2

−Ix1
∆1

1 sin(θ) +
Iy1

∆1
2
cos(θ)

2 − ∆1
1
sin(θ)
4 +

∆1
2
cos(θ)
4 +

∆2
2

4 + cos(θ)y1

2 − sin(θ)ε1
2

)

x̂2|2 =

(
Ix2

∆1
1 cos(θ) +

Iy2
∆1

2
sin(θ)

2 +
3∆1

1
cos(θ)
4 +

∆1
2
sin(θ)
4 +

∆2
1

4 + sin(θ)y2

2 − cos(θ)ε2
2

−Ix2
∆1

1 sin(θ) +
Iy2

∆1
2
cos(θ)

2 − 3∆1
1
sin(θ)
4 +

∆1
2
cos(θ)
4 − ∆2

2

4 + cos(θ)y2

2 + sin(θ)ε2
2

)

For notational convenience, assume that the symbols ≤, < are component-wise
relation symbols. Then, all the constraints that have to be satisfied to achieve
consistency are given by the following component-wise inequalities:

(
Ix1

∆1
1

Iy1
∆1

2

)
≤ x̂1|1 <

(
Ix1

∆1
1 + ∆1

1

Iy1
∆1

2 + ∆1
2

)
(A.36)

(
Ix2

∆1
1

Iy2
∆1

2

)
≤ x̂2|1 <

(
Ix2

∆1
1 + ∆1

1

Iy2
∆1

2 + ∆1
2

)
(A.37)

v1|2 −
(

∆2
1

0

)
≤ x̂1|2 <v1|2 +

(
0

∆2
2

)
(A.38)
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v2|2 −
(

0
∆2

2

)
≤ x̂2|2 <v2|2 +

(
∆2

1

0

)
(A.39)

where

v1|2 =

(
cos(θ)Ix1

∆1
1 + sin(θ)y1 + cos(θ)ε1

− sin(θ)Ix1
∆1

1 + cos(θ)y1 − sin(θ)ε1

)
,

v2|2 =

(
cos(θ)(Ix2

+ 1)∆1
1 + sin(θ)y2 − cos(θ)ε2

− sin(θ)(Ix2
+ 1)∆1

1 + cos(θ)y2 + sin(θ)ε2

)

From the first component inequality in either (A.36) or (A.37), and using the
fact that ε1 > 0 and ε2 > 0 can be taken as small as we want, we get the following
lower bound for ∆1

1:
∆1

1 ≥ ∆2
1 cos(θ) + ∆2

2 sin(θ) (A.40)

Similarly, from (A.38) and (A.39), we can obtain, after operating, lower bounds
for ∆2

1 and ∆2
2. Let µi = yi mod ∆1

2, i = 1, 2, that is, µ1 = y1 − Iy1
∆1

2 and µ2 =
y2 − Iy2

∆1
2. The actual lower bounds for ∆2

1 and ∆2
2 depend on the parameters

µ1 and µ2:

∆2
1 ≥ ∆1

1 cos(θ) + ∆1
2 sin(θ)− 2 sin(θ)µ1 (tightest if µ1 ≤

∆1
2

2
) (A.41)

∆2
2 ≥ ∆1

1 sin(θ) + ∆1
2 cos(θ)− 2 cos(θ)µ2 (tightest if µ2 ≤

∆1
2

2
) (A.42)

∆2
1 ≥ ∆1

1 cos(θ)−∆1
2 sin(θ) + 2 sin(θ)µ2 (tightest if µ2 ≥

∆1
2

2
) (A.43)

∆2
2 ≥ ∆1

1 sin(θ)−∆1
2 cos(θ) + 2 cos(θ)µ1 (tightest if µ1 ≥

∆1
2

2
) (A.44)

We show next that it is always possible to find points x1 and x2 such that
µ1 = µ2. Since (A.30) and (A.31) are satisfied, let q3 = n1

m1
and q4 = n2

m2
, such

that gcd(n1, m1) = 1 and gcd(n2, m2) = 1. Then, we have that:

{k1(∆
2
1 sin(θ) + ∆2

2 cos(θ)) + k2(∆
2
1 sin(θ)−∆2

2 cos(θ)) mod ∆1
2} ={

0,
∆1

2

m1m2
,

2∆1
2

m1m2
, · · · , (m1m2 − 1)∆1

2

m1m2

}
(A.45)

This directly implies that we can always (by varying k1 and k2 in (A.45)) find 2
vertices v1 and v2 (satisfying that µ1 = µ2 = µ) of the following form:

v1|1 =

(
Ix1

∆1
1 + ε1

Iy1
∆1

2 + µ

)
v2|1 =

(
(Ix2

+ 1)∆1
1 − ε2

Iy2
∆1

2 + µ

)
(A.46)
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Consider now the case that at least one of the equations (A.30), (A.31) were not
satisfied. Then, it is also clear that we could find cells with values of µ1 and µ2

as close to each other as wanted because we have a continuum of values (modulo
∆1

2) in this component, and the same conclusions in the proof would follow.

Consider first the case of µ1 = µ2 = µ ≤ ∆1
2

2
. In this case, if we multiply (A.41)

and (A.42) by cos(θ) and sin(θ) respectively and then we sum them, making use
of the equality cos2(θ) + sin2(θ) = 1, we obtain an upper bound for ∆1

1 given by:

∆1
1 ≤ ∆2

1 cos(θ) + ∆2
2 cos(θ) + sin(2θ)(2µ−∆1

2) (A.47)

In order for the upper (A.47) and lower (A.40) bounds of ∆1
1 to be consistent1,

it is necessary to have µ ≥ ∆1
2

2
, which implies that the only valid value for µ is

µ =
∆1

2

2
. Consider now the case of µ1 = µ2 = µ ≥ ∆1

2

2
. In the same way, if we

multiply (A.43) and (A.44) by cos(θ) and sin(θ) respectively and we sum them,
we obtain an upper bound for ∆1

1 given by:

∆1
1 ≤ ∆2

1 cos(θ) + ∆2
2 sin(θ) + sin(2θ)(∆1

2 − 2µ) (A.48)

As before, for the upper (A.48) and lower (A.41) bounds to be consistent, we

need µ ≤ ∆1
2

2
, which implies again that µ =

∆1
2

2
.

Thus, in order to achieve consistency simultaneously for the input vectors x1

and x2, as defined in (A.46), it is necessary to have always µ =
∆1

2

2
. But this is

clearly impossible because, for instance, by taking vertices with k1,k2 given by
k1 = l1m1 and k2 = l2m2, l1, l2 ∈ Z in (A.45), we have always µ = 0. Therefore,
we conclude that it is impossible to achieve consistency for the 2 input vectors
x1 and x2 simultaneously .

A.8 Basis for the sum of 2 lattices: gcld method

Let MΛ1 and MΛ2 be the generator matrices of Λ1 and Λ2 respectively. If ΛΣ =
Λ1 + Λ2 is a lattice, then MΛΣ = gcld(MΛ1,MΛ2) [47]. We need to introduce
first a few concepts. Given matrices A,D ∈ R, D is a left divisor of A and A

is a right multiple of D, if there exists a matrix C ∈ ZN×N such that A = DC.
If ΛΣ exists, which is equivalent to having that (MΛ1)−1MΛ2 ∈ QN×N , then a
matrix D ∈ RN×N is a common left divisor of MΛ1 and MΛ2 if MΛ1 = DP and
MΛ2 = DQ, where P ,Q ∈ ZN×N . A matrix D ∈ RN×N is a greatest common
left divisor (gcld) of MΛ1 and MΛ2 if a) it is a common left divisor of MΛ1 and

1Notice that θ ∈]0, π
2 [, which means that sin(2θ) > 0.
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MΛ2 and b) D is a right multiple of every common left divisor of A and B. Two
matrices H,K ∈ ZN×N are left coprime if every gcld of H and K is unimodular.

Given E, any ordered pair of left coprime matrices (H,K) in ZN×N with
det(H 6= 0, such that E = H−1K, is called a left coprime factorization of E. It is
easy to see that given matrices MΛ1,MΛ2 ∈ RN×N , with (MΛ1)−1MΛ2 ∈ QN×N ,
if D = gcld(MΛ1 ,MΛ2), it is D = AH−1 = BK−1, where (H,K) is a left
coprime factorization of E = (MΛ1)−1MΛ2 .

In order to find the left coprime factorization of a full rank matrix E ∈ QN×N ,
one can use the following algorithm [119]. Let U ,V ∈ ZN×N be unimodular
matrices such that UEV is in Smith-McMillan normal form, that is:

UEV = (Sb)
−1Sa , Sb = diag[b1, · · · , bN ] ,Sa = diag[a1, · · · , aN ] (A.49)

where ai, bi ∈ Z are coprime, ai+1|ai, bi|bi+1, i = 1, · · · , N . Then, taking H =
SbU and K = SaV

−1, (H,K) is a left coprime factorization of E.
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Appendix B

B.1 Proof of Proposition 1

The hypotheses guarantee that (Λj)∗ ∼= Λj ∼= Kn/κ, and, by the Theorem 3,
Λ = Λ1 ∩ · · · ∩ Λr, where r = number of minimal vectors of Λ∗ divided by the
number of minimal vectors of (K)N/κ .

B.2 Proof of Theorem 4

Let pi (i = 1, . . . , k) be the probability that a randomly chosen point in Rn (uni-
formly distributed over a very large ball, say) belongs to Pi, and let ni = piV/Vi,
where Vi is the volume of Pi and V = det(MΛ) is the volume of a fundamental
region or Voronoi cell for Λ. Let V be the particular Voronoi cell for Λ that
contains the origin. Then the periodic tesselation is periodic with “tile” equal to
the part lying in V, and there are n1 cells of type P1 per copy of V, n2 cells of
type P2, etc. Also

V = n1V1 + · · ·+ nkVk . (B.1)

We assume that a point that falls into a cell of type Pi is quantized as the
centroid ci of that cell, in which case the mean squared error is

Ui =

∫

Pi

‖x− ci‖2dx .

The mean squared error for the full quantizer is then

U =

k∑

i=1

niUi = V

k∑

i=1

piUi

Vi
. (B.2)
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We now derive the expression that we will use as a measure of the normalized
mean squared error of this quantizer. Suppose we are quantizing a random vari-
able X ∈ RN , with differential entropy per dimension h(X), and whose support
contains a large number of points of Λ.

A general theorem of Zador about vector quantizers ([135], [136], [62, Eq.
(20)]) implies that in this “high-rate” case the average mean squared error per
dimension U/(NV ) can be approximated by

U

NV
≈ G 22(h(X)−R) , (B.3)

where R bits/symbol is the quantizing rate and G depends on the positions of
the quantizing points but is independent of X.

Since G does not depend on the distribution of X, we may choose any con-
venient distribution in order to calculate G, and we assume that X is uniformly
distributed over a large region of RN , or, equivalently, that X is uniformly dis-
tributed over V . Then

h(X) =
1

N
log2 V, so 22h(X) = V 2/N . (B.4)

To calculate R, observe that we need h(p1, . . . , pk) = −∑k
i=1 pi log2 pi bits

to specify the type of cell to which the quantized point belongs, and a further∑k
i=1 pi log2 ni =

∑k
i=1 pi log2(piV/Vi) bits to specify the particular one of the ni

cells of that type. This requires a total of log2 V −
∑k

i=1 pi log2 Vi bits, and then
R is this quantity divided by N , so that

2−2R = V −2/N

k∏

k=1

V
2pi/N
i . (B.5)

From (B.2)–(B.5) we obtain

G =

∑k
i=1

piUi

Vi

N
(∏k

i=1 V
pi

i

) 2

N

, (B.6)

the normalized mean squared error per dimension, which we take as our figure of
merit for a quantizer. The numerator of (B.6) is equal to U/V (see (B.2)) .
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Appendix C

C.1 Proof of Lemma 5

The set S2 = Q−1(cq(xo)) is clearly convex because it is a K-dimensional cube in
RK. In other words, it is a closed linear manifold in the Hilbert space RK, which
ensures convexity. Similarly, the set W2 = span{α1(φ), · · · , αJ(φ)} is a closed
linear manifold in the Hilber space L2(R), which also implies convexity .

C.2 Proof of Theorem 6

The solution of the linear programming problem is very simple. Consider, for
each φ, the quantity Z =

∑J
i=1 βiαi(φ) where βi can take only one of 2 values,

namely, li or ui, i = 1, · · · , J , where ∆(φ) = ui − li. For each φ, RU(xo, φ)
is obtained choosing for βi the bounds of the quantization intervals [li ui], i =
1, · · · , J which makes Z have the largest posible value (towards +∞). For each
φ, RL(xo, φ) is obtained choosing for βi the bounds of the quantization intervals
[li ui], i = 1, · · · , J which makes Z have the smallest posible value (towards −∞).
Thus, if it happens that αi(φ) > 0, then, RU(xo, φ) is obtained taking βi = ui

and RL(xo, φ) is obtained taking βi = li. If αi(φ) < 0, the mapping is reversed.
From the solution of the linear programming problem, it is clear that

Width(xo, φ) = RU(xo, φ)−RL(xo, φ) =
J∑

i=1

∆(φi)|αi(φ)|

because, by linearity, for a given φ, the i-term in Width(xo, φ) will be either
(ui− li)αi(φ) if αi(φ) > 0, or (li− ui)αi(φ) if αi(φ) < 0. In both cases, we obtain
(ui − li)|αi(φ)| = ∆(φi)|αi(φ)| and the result follows.
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The central curve ĉ(xo, φ) is given by ĉ(xo, φ) = RL(xo, φ)+Width(xo,φ)
2

, which
implies that:

ĉ(xo, φ) =
J∑

i=1

βiαi(φ) where βi =






(
li + ∆(φi)

2

)
=
(

li+ui

2

)
if αi(φ) > 0(

ui − ∆(φi)
2

)
=
(

li+ui

2

)
if αi(φ) < 0






Finally, since ĉ(xo, φ) is the central curve in R(xo, φ), we have that RU(xo, φ) =

ĉ(xo, φ)+ Width(xo,φ)
2

and also that RL(xo, φ) = ĉ(xo, φ)−Width(xo,φ)
2

. The result
follows .

C.3 Proof of Fact 3

The proof follows by simple computation. The transform coefficient value cl(xo, φ)
for location xo, angle φ and level l, is given by cl(xo, φ) =

∑J
i=1 αi(φ)cl(xo, φi),

where φ1, · · · , φJ are the basic angles. Notice that:

(cl(xo, φ))2 =

(
J∑

i=1

αi(φ)cl(xo, φi)

)2

=
∑

i=1

∑

k=1

αi(φ)αk(φ)cl(xo, φi)c
l(xo, φk)

(C.1)
This is a quadratic form with a symmetric matrix C l with components being
C l

ik = cl(xo, φi)c
l(xo, φk). Averaging over all the spatial locations in level l, the

result follows .

C.4 Proof of Proposition 2

Let φ1, · · · , φJ be the basic angles, respect to which both correlation matrices C l
I

and C l
Iθ

are calculated. We denote by cθ(xo, φ) the transform coefficient value
for the rotated texture Iθ at a location xo and absolute angle φ. Notice that a
counter-clockwise rotation of I (in order to get Iθ) is equivalent to leaving fixed
I and rotating clockwise 2D axes by an angle −θ, that is:

cθ(xo, φk) = cl(xo, φk − θ) =
J∑

i=1

αi(φk − θ)cl(xo, φi), i = 1, · · · , J (C.2)

This implies that:

cθ(xo, φn)cθ(xo, φm) =

J∑

i=1

J∑

k=1

αi(φn − θ)αk(φm − θ)cl(xo, φi)c
l(xo, φk) (C.3)
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From here, it follows directly that C l
Iθ

= R(θ)C l
IR

T (θ), where R(θ) is given by:

R(θ) =




α1(φ1 − θ) α2(φ1 − θ) · · · αJ(φ1 − θ)
α1(φ2 − θ) α2(φ2 − θ) · · · αJ(φ2 − θ)

...
...

...
...

αJ(φJ − θ) · · · · · · αJ(φJ − θ)




When the J basic angles are equispaced, using (4.16), it can be trivially checked
that R(θ) is an orthogonal matrix .
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