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Abstract

Multimedia technology has taken an increasingly important part in our daily
life. In particular, fast development of technology now enables handling and
transmission of high volume data like images and videos. Although the cost of
storage and channel bandwidth is becoming lower, it is still too high to handle
multimedia data without compression. Therefore we need to select a proper
compression ratio so as to avoid any applicable constraints, while providing high
perceptual quality. The applications considered in this thesis are digital cameras
and video-on-demand (VOD) services.

Most digital cameras have limited storage size and time delay for compression
due to the limited working memory. We address the problem of image compres-
sion in digital cameras, where the goal is to achieve better quality at a given rate.
A novel method including format conversion, nonlinear transform and cropping

is proposed to compress captured image data without increasing redundancy.

XV



We also consider the problem of online rate control in digital cameras, where
the goal is to achieve near-constant distortion for each image. An online rate con-
trol algorithm based on the amount of storage used by previously stored images,
the current received image, and the estimated rate of future images is proposed.
A MMAX (minimization of maximum distortion) criterion is used, since each
image has the same importance.

VOD services use either a constant bit rate (CBR) or variable bit rate (VBR)
channel to transmit video streams. In these systems, the main constraints are
the maximum end-to-end delay to support real-time playback and the channel
rates. We focus on finding an off-line optimal rate control in both CBR and VBR
transmission. To provide best minimum quality to each data unit, a MMAX
criterion is used. We introduce an approach that minimizes the average distortion
using the leftover bit-budget available after the MMAX solution (MMAX+).
This allows us to increase the overall quality, and can also reduce the complexity
of MMSE bit allocation relative to searching for the optimal MMSE solution

directly.
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Chapter 1

Introduction

1.1 Motivation of the research

The fast development of technology enables the increasing use of digital media
in commercial products. The advantage of digital formats is that they give many
desirable features such as flexibility and robustness. Also the development of the
Internet enables the easy exchange of digital data, including images and videos.
New image and video input products such as digital cameras and camcorders are
becoming available.

In commercial video input devices, digital technology was first introduced to
improve camera parts in analog camcorders. By using a single DSP processor,
many data processing tasks, such as interpolation, gamma correction, exposure
control and white-balance control can be implemented efficiently. But in analog

camcorders, digitally processed data are converted into an analog signal by using



D/A converters, re-formatted to television signal such as NTSC, PAL or SECAM
format and modulated to be stored on magnetic tapes [30]. Therefore the main
purpose of digital signal processing in these systems is making the CCD input
source as similar as possible to the original scene. More recently, as a descen-
dant of this analog camcorder, digital cameras (including digital camcorders) are
becoming very popular. The main difference between digital cameras and ana-
log camcorders with a DSP processor is that the output of the digital camera
is stored in digital format. Therefore stored data can be copied without addi-
tional distortion and can be edited easily. But the price of digital storage, e.g.,
flash memory devices, is still very high, and therefore the bit-rate of the images
should be kept as low as possible. To do this, most digital cameras use lossy com-
pression schemes to store the images. Therefore most digital cameras use image
processing techniques to improve image quality, such as those first used in analog
camcorders, and then compress the image as much as possible while preserving
perceptual quality (see Fig. 1.1). In other words, the image processing and image
compression stages are totally separated. Here we argue that this approach may
not be the best in the sense of maximizing the quality of decoded images under
a given bit-budget. In this thesis, we thus study techniques to merge the image
processing and image compression stages in order to improve the quality of stored

images.
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Figure 1.1: The block diagram of image processing and image compression units
in digital cameras. [24]

Another problem related to data compression in digital input devices is that
of sharing the available and possibly scarce storage among several images or
videos. Efficient source coding is indispensable to store images and videos in a
compressed form. Many data compression formats have been standardized in
order to facilitate interoperability. In particular, lossy coding techniques like
JPEG [49], JPEG2000 [66] and JBIG [22] for images, and MPEGx [25, 26, 27],
H.26x [29, 77] for videos are generally used to achieve high compression ratio.
All of these standards use entropy coding to reduce the redundancy in the data.
However, the amount of redundancy varies within each source, e.g., within a video
sequence or from image to image, and, as a result, the bit-rate of encoded data is
variable. Although each image or each video frame can have near-constant bit-

rate by choosing different quantization values, the output rate should be variable



in order to achieve desirable features like minimum average distortion, constant
distortion or constant visual quality.

To store variable rate data into a fixed size storage, proper bit allocation
techniques are needed. For example, in digital cameras, an “on-line” bit allocation
method is needed since no information about the statistics of future images is
available when the current image is being compressed. One simple method is to
allocate the same bit-budget to each image, but in this case, the visual quality of
each coded image can fluctuate significantly . Therefore, to achieve equal visual
quality of all images, the statistics of future images should be estimated. In other
scenarios, if the goal is to transfer some multimedia data from source storage
media to another storage medium by using a detachable small size storage media
like a floppy disk or flash memory, all the statistics of the source to transfer
are given before starting data compression. So in this “off-line” bit allocation
problem, the optimal solution can be found under a given objective function.

In this thesis, we use a minimization of maximum distortion (MMAX) crite-
rion to find the optimal solution since each data unit (image) is equally important
(criteria for quality measurement will be mentioned in the next section). We also
propose an “on-line” bit allocation algorithm to achieve a near-optimal solution

under this criterion.



The last topic of this thesis is bit allocation for data transmission. Recently,
high bandwidth video applications over networks are becoming popular, and in-
clude for example video conferencing and video-on-demand (VOD). As in the
other cases discussed above, “lossy compression” is used and so the output data
rate of the coder tends to be variable bit rate (VBR). This rate is controlled by
the encoder based on objectives such as coded video quality or data rate. Also,
video transmission needs to be performed under delay constraints for real time
playback since late video frames are useless.

To transmit VBR data, VBR transmission is better than CBR (constant bit
rate) transmission, since VBR transmission needs lower end-to-end delay and a
smaller buffer size [5]. Asynchronous Transfer Mode (ATM) networks are an ex-
ample of a network architecture that allows VBR transmission with QoS (quality
of service) guarantees, where the parameters specified to define QoS can be delay
jitter, bandwidth, end-to-end delay and so on. Due to the limited network re-
sources, negotiation between each user and the network is indispensable in order
to ensure QoS guarantees. In addition, policing mechanisms are used to alert
the network about users who violate the agreed upon transmision parameters.
VBR video transmission through ATM networks has been studied with a leaky
bucket policing function [53, 46, 5, 23]. In [53], VBR transmission under encod-
ing and decoding buffer constraints and channel constraints is studied. In [46],

rate control with multiple leaky bucket policing is introduced to regulate peak



rate. It may be desirable to supplement a traffic policing policy with a traffic
shaping policy, where traffic shaping is used to smooth out a traffic flow. One
simple traffic shaping approach is token bucket. In contrast to the leaky bucket,
token bucket controls the flow of compliant cells [68]. In the encoder side, a leaky
bucket and a token bucket are equivalent under the condition that the size of
bucket is same and leak rate and token rate are same. But in the decoder side,
the incoming data rate can be different.

The token bucket is also specified in next generation Internet Protocol (IP)
networks. The Internet Engineering Task Force (IETF) has defined a Guaranteed
Service (GS) in order to provide QoS to real time applications. As in the ATM
case, token bucket policing is used as a traffic shaping method for a Guaranteed
Service [62].

From the media providers view point, the goal is to supply the best quality
videos, while using limited network bandwidth. In other words, the problem is
how to allocate the bit-budget among several data units without violating the
negotiated constraints and achieving best quality. In this thesis, we propose an
off-line algorithm to find the optimal solution for this problem. The MMAX
and additional minimization of average distortion (MMAX+) criteria are used to
achieve the best minimum quality for each data unit and good average quality

for a data sequence.



1.1.1 Focus of this thesis

This thesis presents topics related to lossy source coding optimization in several
special environments. In Chapter 2 and Chapter 3, source coding problems for
image (or video) input devices are studied. First, an algorithm to reduce redun-
dancy by using the characteristics of the Bayer color CCD array is proposed and
then an on-line bit allocation algorithm under a budget constraint is studied. In
Chapter 4, the optimal bit allocation problem under channel constraints is stud-
ied. Token bucket and peak transmission rate are used as channel constraints. In
this thesis, we focus especially on a minimization of maximum distortion criterion
to find the optimal bit allocation.

The rest of this chapter will review bit allocation problems under different

criteria. After that, the contributions on each topic of the thesis are summarized.

1.2 Bit Allocation

In this section, we review the bit allocation problems under several different con-
straints such as time delay, total bit-budget, and buffer and channel constraints.
We focus on the case where each data unit has a finite set of R-D operating
points (i.e., rate and distortion values of the coded data unit) determined by
different quantization levels. Therefore the optimal bit allocation is the one that

chooses a quantization level for each data unit, such that the corresponding rate



and distortion do not violate the given constraints and the desired cost function
is minimized. To find the optimal bit allocation, at first, a distortion measure

related to the desired goal should be defined.

1.2.1 Distortion measure

The most widely used distortion measure criterion in the field of multimedia data
compression is the MMSE criterion. Under a given set of constraints, a MMSE so-
lution uses the given bit-budget to decrease total distortion of the data sequence.
This criterion, however, is not desirable in cases where constant distortion (or
quality) is required. One example arises in the case of digital cameras, for which
it is desirable that all images be stored with the same quality.

For this purpose, a MMAX criterion can be used. In this criterion, any remain-
ing bit-budget is always assigned to the data unit that has maximum distortion.
Therefore if there is a sufficiently fine granularity in the operating points for each
data unit, it gives constant distortion to each data unit. Since the MMAX crite-
rion is only minimizing maximum distortion, if the maximum distortion cannot
be reduced then quality cannot be improved even though additional resources are
available. The toy example in Fig. 1.2 illustrates this problem. After changing
the quantization levels of both images, the distortion of the first image is 50 and

that of the second image is 100, and the remaining bit-budget is 1KB. Using



1st image 2nd image

r(KB) | d r(KB) | d
2 110 3 120
4 50 5 100
5 40 7 80

Figure 1.2: Tables indicate sets of available rate distortion pairs of two images.
Total bit-budget is 10KB and the unit of rate in the tables is KB. The numbers
in gray boxes indicate the rates corresponding to the MMAX solution.

the MMAX criterion, we try to decrease distortion of the second image using
the remaining bit-budget. But going to the next finer quantization level would
require a 2KB rate increase for the second image and a 1KB rate increase for the
first image. In this case, we cannot reduce the maximum distortion because that
would mean using an additional 2KB for the second image. Note that while using
an additional 1KB for the first image would reduce the overall distortion it would
not decrease the maximum distortion, and thus a MMAX search algorithm would
not make that selection. Therefore additional distortion criteria are needed to
improve the overall quality. The minimization of distortion under lexicographical
constraints (MLEX) criterion and the MMAX+ (minimization of average distor-
tion with the leftover bit-budget after the MMAX solution) criterion, which is
introduced in this thesis, are used for this purpose.

In the MLEX criterion, two different solutions are arranged by a sorted list

of their distortion in a non-increasing distortion order. Then a comparison of



the distortions is based on considering the list starting from the 1% index. If
the distortions in the first position are equal then the 2"¢ indices are compared.
If the distortion of two solutions is different for a given index then the solution
with smaller distortion in that index is the better one. Otherwise the comparison
is continued through the following position until the distortion of two solutions
are different. [18, 19, 20, 21]. Therefore, this criterion focuses on improving the
quality of each data unit. On the contrary, in a MMAX+ criterion, the remaining
bit-budget after finding a MMAX solution is used to improve overall quality.

In this thesis, we mainly focus on MMAX and MMAX+ criteria to find an

optimal solution.

1.2.2 Off-line algorithms vs. On-line algorithms

To find an optimal solution in a given criterion, all source information should
be available before the bit-rate of each data unit is selected. However, in many
cases, a current data unit should be coded without any knowledge of the statistics
of future data units. In the former case an off-line method can be used, while
in the latter on-line methods have to be used. In general applications, time
delay, memory space and computing power are strongly limited, so an off-line

method is usually not practical. But since the off-line method can give an optimal
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solution, this method is often used to benchmark the performance of a given on-
line method.

In some applications, such as developing DVD titles, all source data are avail-
able before coding, but due to limited computing power or time, gathering all
statistics needed is impossible. In this case, partial information (including motion
vectors and scene change locations) about the data is gathered in a first coding
(called the first pass coding) and by using this information, a near optimal solu-
tion can be achieved in the second coding (called the second pass coding). These
types of off-line methods are called 2-pass coding [79].

Window methods (such as jumping window and sliding window techniques)
are also used as near optimal approaches in order to reduce complexity. In the
methods, using the statistics of a limited number (the size of the window) of
current and future data, the bit-rate of a current data unit is determined. In a
jumping window method, the bit-rate of each data unit in a window is determined
by using the statistics of the data units in the window. In a sliding window
method, only the bit-rate of the current data unit is determined at each iteration
and the window is shifted to determine the bit-rate of the next data unit.

An on-line method requires good estimation of the statistics of future data in
order to achieve near optimal performance. Usually training data and previously

coded data are used to estimate future data.
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Chapter 3 of this thesis studies on-line bit allocation in a fixed size storage and
Chapter 4 studies off-line optimal bit allocation for video transmission through

CBR and VBR channels.

1.2.3 Independent allocation vs. Dependent allocation

In a source coding algorithm, entropy coding, in the form of Huffman coding or
arithmetic coding, is normally used [8] [57]. For example, in JPEG coding, a
modified Huffman coding is used in the base-line version and arithmetic coding is
used as an option. Contrary to the quantization step in which data is compressed
by removing less important information, data is compressed by removing redun-
dant information in the entropy coding step. In a sequence of randomly selected
images, such as those that could be captured by a digital camera, consecutive
images seldom have high (temporal) correlation with each other, although there
is high spatial correlation within each image. So in general, each image is coded
separately. On the other hand, in a video sequence, consecutive frames have high
temporal correlation. Therefore, after a frame has been coded by exploiting spa-
tial correlation (called intra-frame coding), several following frames can be coded
by exploiting the temporal correlation between the intra-coded frame and the
new frames to be coded (called inter-frame coding). For instance, MPEG uses a

group-of-pictures (GOP) layer and in the GOP (normally 12 or 15 frames), only
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Figure 1.3: Typical structure of a GOP. I frame indicates intra-coded frame. P
and B frames indicate inter-coded frames. The arrows indicate referring relation.

one frame is coded by using intra-frame coding and the remaining frames are
coded by using inter-frame coding (see Fig. 1.3).

So, if each data unit is coded by only using its own correlation (intra-coding)
then the distortion of one data unit does not affect the distortion of other data
units. But if each data unit is coded by using the prediction based on the other
data units and residues (inter-coding) then the distortion variation of the refer-
ence data unit affects the distortion of referring data units. In this case, the bit
allocation problem is called a “dependent allocation”, while otherwise it is called
an “independent allocation”. Dependent allocation is much more complex since
rate and distortion of a referring data unit should be recalculated if the distortion

of a reference data unit is changed.
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1.2.4 Bit allocation under a total bit-budget constraint

This problem arises when the goal is to store data into fixed size of storage media.
For example, a digital camera has a fixed memory size, which should be able to
store a pre-determined number of shots. Another example is digital camcorders
which store a pre-determined number of video frames into the fixed size tape
media. This problem can be formulated as follows.

Under the MMSE criterion, the goal is to find the set of quantizers such that

N

J= ngn(z di(q)) s.t. Zri(qi) <R (1.1)

i=1 i=1

and using the MMAX criterion,

J = min( max (d;(q;))) s.t. Zri(qi) <R, (1.2)

i 1=1,...,IN
q; i1

where J is the minimum cost, N is the total number of data units, R is total
bit-budget and 7;, d; are rate and distortion of the i"® data unit, respectively. 7;
and d; are a function of ¢;, where ¢; is the quantization index of the i data unit.

The range of ¢; is from 1 to the number of quantization indices of the i** data

unit (Q;).
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Figure 1.4: Toy example of increasing rate-distortion relation. x-axis indicates
data range and arrow lines indicate reconstruction points. We assume the source
data are 0.25 and 0.75. Rate and distortion (r,d) in (a),(b) and (c) are (1,0),
(2,1/32) and (4,1/128) respectively. Here the square sum of error is used as a
distortion. From (a) and (b), we can see that distortion is increased even if rate
is increased. This phenomenon no longer occurs if we consider a large enough
number of data inputs and the data is well distributed.

1.2.4.1 Optimal solution under the MMSE criterion

In the literature the Lagrangian method [64] and the dynamic programming
method [48] are used as popular approaches to find the optimal solution under
the MMSE criterion.

The Lagrangian approach to solve this problem is studied in [64]. Similarly,
in [52], the Lagrangian method is used to find best wavelet bases to minimize
distortion under given bit-budget. Also dependent allocation problem is studied
in [51]. This dependent problem is also studied in [76], a model is defined and
the optimal solution under MMSE and MMAX criteria is provided based on the

model.
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distortion

Figure 1.5: The curve indicates the convex hull and the points on the solid
and dashed lines are the point of the operational rate distortion curve. Point A
indicates the optimal solution of given total budget (R) and point B indicates the
solution on the convex hull which can be found by using a Lagrangian method.

The Lagrangian method changes the above budget constrained problem to
an unconstrained problem by merging distortion and rate through a Lagrange

multiplier A\, A > 0. So (1.1) can be changed to

Iy = H;ZH(Z (di(gi) + A ri(ai))), (1.3)

i=1

where J, is the minimum cost under given A. In the above equation, we can see
that the minimum can be calculated for each data unit separately. Given A, a
point on the convex hull is such that the line of absolute slope A is its tangent and

will be the solution of (1.3) for that A. Since the corresponding rate is monotonic
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non-increasing with A [64], the best solution can be found by solving the equation
iteratively with smaller A until the sum of rate is not over the total budget.

However, the operational rate-distortion curve is not convex in general and
is not always non-increasing (see Fig. 1.4), where the operational rate-distortion
curve means the rate-distortion boundary determined by using a given discrete set
of quantization values and a coding scheme (see Fig. 1.5). Since the Lagrangian
method finds only the solution on the convex hull, the optimal solution cannot be
found if the operational rate-distortion curve is not convex and the solution is not
on the convex hull. In Fig. 1.5, the best solution of the Lagrangian method is the
point B under total budget R whereas the optimal solution of the original problem
is the point A. While the Lagrangian method gives a suboptimal solution, this
method is widely used due to its lower complexity. In video coding, this method
is also used to find rate-distortion-optimized motion estimation vectors [71] and
for rate-constrained motion estimation mode selection [80].

In order to find the global optimal solution, a dynamic programming method
is used. Among the different types of dynamic programming methods, Viterbi
algorithm [81] or Dijkstra’s shortest path algorithm [7] can be used to solve this
problem. Fig. 1.6 shows an example of a dynamic programming method. In the
figure, a stage is each data unit, a state is the sum of bit-rates from the first
stage to the current stage and a trellis is a connection from a state of the current

stage to a reachable state of the next stage. The beauty of these algorithms
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is that the optimal trellis path from a state (i) of the first stage to a state (j)
of a current stage is part of global optimal trellis path from 7 to a state of the
final stage through j. Therefore under the condition that the states (including
cumulative costs and the path up to now) of a current stage are given, previous
stages and future stages are independent. The complexity of this algorithm is
O(BNQ), where B is the total bit-budget, N is the number of data units and
@ is the number of the quantization levels of each data unit. Comparing to the
exhaustive search algorithm whose complexity is O(Q"), this method reduces
complexity very significantly (although complexity remains very high). Sub-
optimal methods such as those involving clustering of neighbor states [48] can be
used to reduce complexity. In a clustering method, the number of states of each
stage is reduced by merging several states into one state. Only the one path that
has minimum distortion among those reaching the cluster is kept and the others
are pruned.

Another application of a dynamic programming method in source coding is
trellis-coded quantization (TCQ) [43] [12]. TCQ uses a structured codebook with
an extended set of quantization levels and it reduces encoding complexity under
a given level of performance. TCQ also gives a good result in wavelet image

coding [67] and is adopted in JPEG2000 (Part IT) [44].
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Figure 1.6: Toy example of a dynamic programming method. Total bit-budget is
6, the number of data unit is 3 and each data unit has 3 quantization values. Thick
lines indicate the optimal solution path and dashed lines indicate impossible paths
due to limited budget. As we can see the optimal path between stage 1 to stage
2 which is found at stage 2, does not change after finding the global optimal path
at stage 3.
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1.2.4.2 Optimal solution under the MMAX criterion

When using the MMAX criterion and under the assumption that distortion is a
non-increasing function of rate, finding the optimal solution is relatively simple
because we can greedily choose a data unit that has maximum distortion and
change its quantization index. This can be done until the total bit-budget is used
up. For each data unit, since the states (operating points) are sorted in decreasing
order of distortion, we need at most N — 1 comparisons to find the maximum
distortion in each iteration. There are in total N(@) states so the algorithm is
terminated in at most NQ iterations. Therefore the complexity is O(N?Q). A
more efficient way to find the solution is by sorting all the states in decreasing
order of distortion first and then doing iterations until the sum of rate is reached
to the total bit-budget. Merge sorting can be used since states in each data unit
are already sorted. The complexity of this sorting is O(NQ log N) (see Fig. 1.7.).
The number of iterations is at most N@Q and in each iteration, running time is
O(1). Therefore total complexity is O(NQ log N).

Another algorithm to find a MMAX solution is based on iteratively solving a
minimum rate problem with a successively updated target distortion [59]. The

following formula shows a minimum rate problem.
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Figure 1.7: Iterative procedure of Merge sorting . O(/N(Q) comparisons are needed

in each level and there are log N levels. Therefore complexity of this merge sorting
is O(NQlog N).

ri(q:)

dl(%) > Dma:c

dz(%) S Dmaa:

(1.4)

Using this equation, we find the sum of the rate of all data units whose distortion

is smaller than or equal to the given D,,,,. If the sum of the rate is smaller than

the total bit-budget then the target distortion D,,,, is decreased. Otherwise the

target distortion is increased. This procedure is iterated until the total rate is the

given bit-budget. A bisection method can also be applied but has the problem

of potentially requiring infinite time to terminate, since the bisection is applied

on the distortion which can be any positive real number. However this algorithm

can be used to get a good initial point before applying a merge sorting algorithm.

After finding the MMAX optimal solution, an additional criterion such as

MLEX or MMAX+ can be applied. In [58], these additional criteria are used to
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break potential ties. In general, there can be two or more solutions that have the
same rate sum and the same maximum distortion. Among these solutions, the
one that has the best performance in an additional criterion is chosen as a final
solution. In this thesis, the additional criterion is applied to use up the remaining

bit-budget. (The toy example is given in the section 1.2.1.)

1.2.5 Bit allocation under a buffer constraint

In many video applications, encoding is done once by video content owners and
decoding is done many times, each time a user decodes the sequence. Therefore,
decoding has more physical or cost constraints than encoding. The memory
size is one of these constraints and so an encoder should generate a bit-stream
such that decoder buffer overflow is avoided while using a relatively small buffer.
For this purpose, a Video Buffering Verifier (VBV) is used in MPEG1 [25] and
MPEG?2 [26] and, similarly, a Hypothetical Reference Decoder (HRD) is used in
H.263 [29] and H.26L [54] [55].

This constraint can also be used in data transmisson through a constant bit-
rate (CBR) channel under a delay constraint. In the case of CBR transmission
with limited delay, the data in the encoder buffer cannot exceed M - C bits,

where M is the maximum delay in seconds and C' is channel rate in bits/second.
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Otherwise, the data cannot be transmitted to meet the delay constraint of M
seconds.

This problem is formulated as follows. Under the MMSE criterion,

N
J=min(Y di(¢:)) st. Bi < Bpgg,Vi=1,--- N (1.5)

q
=1

and under the MMAX criterion,

J = min( max (d;(¢;))) s.t. B; < Bpae,Vi=1,---,N, (1.6)

q; i=1,..,N

where B4, is the buffer size and B; is the buffer occupancy after coding the 5
data unit. B; can be obtained recursively as

B; = max(B;_1 +r; — 1, 0) (1.7)

/)

In (1.7), rd is the amount of decoded data in the interval between the (i — 1)

and " data units. The maz operation is needed since the buffer state cannot

d

be negative. 7{ can be replaced by C'- T in CBR transmission, where 7' is the
interval between data units.

In [48], the optimal solution of this problem for the MMSE criterion is found
by using a Viterbi algorithm. Also a fast approximation algorithm by using a

Lagrangian method is proposed. For the MMAX criterion, the problem is solved
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by the same method used in a budget constrained problem. The difference is that
in this problem, for each iteration, B; should be re-calculated to check whether
any B; violates the buffer constraint. Although the complexity of each iteration
is increased, the complexity is still bounded as O(NQlog N) and this will be
shown in chapter 4. The algorithm is terminated when any single violation is
found, so in practice, the number of iterations is much smaller than that needed
in a budget constrained problem.

The following formulation, where delay and channel constraints are consid-

ered, is a generalized version of this buffer constrained problem.

1.2.6 Bit allocation under delay and channel constraints

As explained in the previous section, the encoder buffer size is restricted by the
maximum delay in CBR transmission. Therefore in this case, the objective of
the bit allocation problem is finding the optimal solution under a given criterion
without violating a buffer constraint. But in VBR transmission, several channel
constraints are imposed in order to guarantee quality of service. For example,
the constraints where a leaky bucket (or a token bucket) policing function is used
are the size and output rate of the bucket. Peak transmission rate can be another

channel constraint.
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Optimal bit allocation algorithms for VBR video transmission over an ATM
network are proposed in [5] [23]. In [5], leaky bucket policing function is used
as a channel constraint and the Lagrangian method is used to find the optimal
solution. Multiple buffer constraints are imposed in this case. An “anchor point”
is defined, which indicates buffer overflow constraint when a single Lagrange
multiplier is applied to find the optimal solution. After finding the anchor point,
the Lagrangian method with a single Lagrange multiplier is used again to find
the optimal solution up to this anchor point. This routine is iteratively applied
until no more anchor points appears. Similar algorithms are used in [45] to
find optimal bit allocation under multiple rate constraints. In [23], leaky bucket
and double leaky bucket policing functions are considered as channel constraints
and Viterbi algorithm is used to find the optimal solution. In the algorithm, the
status of a leaky bucket and a decoder buffer is used as states in the algorithm.
The violation of negotiated network transmission parameters and of the delay
constraints can be checked by using the status of a leaky bucket and of a decoder
buffer, respectively.

In [4], a MMAX criterion is used to achieve fair bandwidth allocation for
VBR traffic in ATM networks. In this work, the MMAX criterion is not used
at the encoder side to choose optimal bit-rate for each data unit. Instead it is

used in the network queue side of wireless-ATM to decrease cell losses and delays.
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Therefore a MMAX criterion is used for minimizing maximum buffer occupancy

of each VBR source.

1.3 Contributions of this thesis

There are three issues related to image and video coding that are addressed in

this thesis: capture, storage and transmission.

1. Chapter 2 studies a new image coding scheme that uses the special charac-
teristics of the input devices such as digital cameras and digital camcorders.
In a conventional scheme, the image processing and image compression
stage are fully separated. So the objective of an image processing stage is
maximizing visual quality of captured scenes and that of an image com-
pression stage is minimizing source rates without severe distortion in visual
quality. In this chapter, we consider a joint solution of image processing
and image compression to reduce source rate with better visual quality. We
focus on the Bayer color filter array, which is the most popular charge cou-
pled device (CCD) in commercial input devices. The key idea to achieve our

goal is to remove source redundancy that is added during image processing.

Several methods such as format conversion, nonlinear transform and crop-

ping are proposed to use popular image coding schemes like JPEG and
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SPIHT. By using this algorithm, with same source rates, we can achieve bet-
ter quality images in a whole range of compression ratios (when bi-linear in-
terpolation is applied). Another important advantage is that this algorithm
can reduce coding complexity by nearly 25% (50%) in color (monochrome)

images and also reduce the blocking artifact in JPEG.

. Chapter 3 focuses on the data storing problem in a situation where a fixed
memory size is available. This chapter shows how to find an on-line bit allo-
cation solution among the given number of images based on a minimization
of maximum distortion criterion (MMAX). This problem is encountered
in image input devices such as digital cameras. In digital cameras, each
image has the same degree of importance, so MMAX is a proper criterion
as an objective measure. To find an on-line solution, the statistics of fu-
ture images need to be estimated by using training image sets and they
are updated by using the statistics of previously captured images. Also
we propose a T step delay method in which the statistics of the next T
images are given before a current image is stored. A comparison with the
solutions of constant distortion, constant quantization value and constant
rate methods is provided to show the advantage of the proposed methods.
From the comparison with the off-line optimal solution, we show that these

methods give a near optimal solution.
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3. Chapter 4 focuses on the optimal rate control for multimedia (especially,
image and video) data transmission through an ATM network or a future
IP network which provides quality of service. The problem here is how to
maximize source quality without violating channel constraints. To find the
optimal rate control scheme, a MMAX criterion and a MMAX+ criterion
are used as a distortion measure. By using these criteria, minimum total
distortion can be achieved under the condition that the minimum quality
of each data is guaranteed. In this chapter, we provide the off-line optimal
rate control of CBR and VBR transmission under token bucket policing
based on MMAX and MMAX+ criteria. We also provide an algorithm to

reduce the complexity of finding the MMAX+ solution.
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Chapter 2

Image Compression in Digital Cameras with a

Bayer Color Filter Array

In this chapter, we propose a new approach for image compression in digital
cameras, where the goal is to achieve better quality at a given rate by using the
characteristics of a Bayer color filter array. Most digital cameras produce color
images by using one CCD plate and each pixel in an image has only one color
component, so an interpolation method is needed to produce a full color image.
After the image processing stage, in order to reduce the memory requirements of
the camera, a lossless or lossy compression stage often follows. But in this scheme,
before decreasing redundancy in a compression stage, redundancy is increased in
an interpolation stage. In order to avoid increasing the redundancy before com-
pression, we propose algorithms for image compression, in which the order of the

compression and interpolation stages is reversed. We introduce image transform
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algorithms, since uninterpolated images cannot be directly compressed with gen-
eral image coders. The simulation results show that our algorithm outperforms
conventional methods. This proposed algorithm provides not only better quality
but also lower complexity because the amount of luminance data used in our

method is only half of that in conventional methods.

2.1 Introduction

Digital cameras use image-processing schemes, e.g., interpolation techniques, such
as those used in analog camcorders in order to achieve good quality images. One
big difference between digital cameras and analog camcorders is that digital cam-
eras store digital data in flash memories. Thanks to storing digital data, func-
tionalities such as image editing and enhancement can be added. But the price
of flash memories is still very high, so that the image bit-rates should be kept as
low as possible (note that a 5 mega pixel CCD digital camera needs 15 Mbyte to
store one image without compression). To do this, most digital cameras use lossy
compression schemes like JPEG [49] to store the images. Therefore, like analog
camcorders, most digital cameras improve image quality using image processing
methods and then compress the image as much as possible while preserving per-
ceptual quality. In other words, the image processing and image compression

stages are completely decoupled.
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In typical image processing stages redundancy is increased by color pixel inter-
polation. In order to produce full color images, most digital cameras place color
filters on monochrome sensors. Some high-end digital cameras use three CCD
plates to get full color images, where each plate takes one color component. But
most digital cameras use one CCD plate with several different color filters and
produce full color images by using an interpolation technique. Although there
are several different color filter arrays (CFA) [82] [83], in this chapter, we focus
on the Bayer CFA which is most widely used in digital cameras. The Bayer CFA
shown in Fig. 2.1 uses 2 by 2 repeating patterns (RP) in which there are two green
pixels, one red and one blue. There is only one color component in each pixel, so
the other two color components for a given pixel have to be interpolated using
neighboring pixel information. For example, in a bilinear interpolation method,
the red (blue) color component on a green pixel in Fig. 2.1 is produced by the
average value of two adjacent red (blue) pixels. Although there are several pos-
sible interpolation algorithms [50] [42] [75] [1] [33] [15], it is clear that from an

information theoretic viewpoint they all result in an increase of redundancy.

In a conventional method, as shown in Fig. 2.2 (a), after finishing the image
processing stage, a lossless or lossy image compression algorithm is used before
storing the image. Although in theory one could achieve the same compres-

sion with or without the interpolation, to do so would require exploiting the
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Figure 2.1: Bayer color filter array [3]. Each letter indicates the position of a
different color filter. R, G and B are for Red, Green and Blue, respectively. The
gray block indicates 2 by 2 repeating pattern.

specific characteristics of the interpolation technique with the compression algo-
rithm. Clearly applying any standard compression method without modification
does not exploit this knowledge. For this reason, in this chapter we propose im-
age transformation algorithms to encode the image before interpolation, so that
interpolation is performed only after decoding. In other words, the proposed al-
gorithms compress images before adding the redundancy of the interpolation, as
shown in Fig. 2.2 (b).

As an image coder, JPEG is widely used in digital cameras because it is
relatively simple and provides good performance, especially when the compres-
sion ratio is low. But JPEG is a block discrete cosine transform (DCT) based
coder and the blocking artifacts can become severe as the compression ratio be-
comes higher. Discrete wavelet transform (DWT) based coders such EZW [61],

LZC [73], SPIHT [56], MTWC [78] and EBCOT [72] (adopted in JPEG2000 [74])
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Figure 2.2: Block diagrams of (a) the conventional method and (b) the proposed
method. In (a) an image processing stage is followed by a compression stage. In
(b) interpolation and post-processing in an image processing stage are done after
compression and decompression.

Encoding

are also used as image coders. A DW'T based coder does not produce blocking
artifacts and it provides good performance under a high compression ratio. In
this thesis, we use JPEG and SPIHT as representative of the DCT and DWT
based approaches, respectively. Our proposed algorithms are tested under both
of these coding techniques.

Methods to increase image quality using the redundancy of interpolation in
post- and pre-processing stages have been studied. In [16], under the assumption
of a fixed interpolation algorithm, the quantization noise is reduced by using an
iterative method that incorporates information about the interpolation algorithm.
By contrast our approach assumes only a specific CFA and can operate with

any interpolation technique. Our approach is based on a novel technique to
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map the existing image (with single color pixels) into an image that can be
efficiently compressed. The main difference is that our algorithms compress non-
interpolated images without introducing redundancy of interpolation, whereas the
algorithm in [16] improves image quality by using the redundancy of interpolation.
In this chapter, extending our previous work in [35], we propose several dif-
ferent algorithms to transform the non-interpolated images before compression.
We provide performance results of the proposed algorithms with different coders
(JPEG and SPIHT) and interpolation methods (bilinear and adaptive interpola-
tion). Also, using a simple example based on one-dimentional data, we provide
an analysis to justify why our approach outperforms conventional methods.
This chapter is organized as follows: in section 2.2, the theoretical rate dis-
tortion performance of the conventional (compression after interpolation (CAI))
and proposed (interpolation after decoding (IAD)) approach is analyzed by using
a 1-D sequence and DPCM encoding. Proposed image transformation algorithms
are addressed in section 2.3. Experimental results are provided as demonstration
of the validity of our algorithm in sections 2.4 and 2.5. Finally, the conclusion

of this work is in section 2.6.
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2.2 Performance comparison using one dimensional

sources

Note that in our problem we do not have access to an original full color image,
since the camera captures images with single color pixels. Thus, for the purpose
of comparison we use as a reference a full color image obtained by interpolating
the original (uncompressed) captured image. Therefore our problem will be to
find coding schemes that are optimized in terms of minimizing the error with
respect to that original interpolated image.

The main difference between the CAI and IAD methods is the order of com-
pression and interpolation. In this section we show that an IAD method theoreti-
cally outperforms a CAI method by considering differential pulse code modulation
(DPCM) compression of a one dimensional first order autoregressive (AR) pro-
cess. Although open loop DPCM is not generally used due to error propagation
in a decoded sequence, the difference sequence has an explicit theoretical R-D
curve when the source is Gaussian AR processes. Therefore we consider open

loop DPCM of one dimensional first order zero mean Gaussian AR processes. Let

X,=pXp1+W,, n=12,---, (2.1)
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Figure 2.3: Gray and white boxes indicate original and interpolated samples,
respectively. In (a), {Z,} is a differential sequence of the original sequence taken
from sensors and in (b), {7,,} and {S,} indicate a differential sequence of the
interpolated sequence.

denote the process, where {W,} is a zero-mean sequence of independent and
identically distributed random variables and W,, ~ N (0, 0%,), and p is the corre-
laton coefficient (0 < p < 1). Then from the probability distribution of W,,, the
probability distribution of X, is N(0,0%,/(1 — p?)). We assume that the initial
state X is given and we are interested in the source outputs for n > 1.

We define the differential sequence of {X,} as {Z,} then

Zn 2 Xy —Xp1=(p— D)X 1 +W,. (2.2)

Since X,,_; and W, are independent, Z, also has Gaussian distribution (Z, ~

N(0, 207,/(1+ p))).
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The rate distortion (R-D) function for a Gaussian source with mean square
error (MSE) distortion can be written in closed form [8] and the R-D function of

Zy, is
1 20,

202
Z1 W w
2ol q 3 D

Ry(D) = ), 0<D<

. 2.3
< T+ (2.3)

Next, we double the number of samples by using a linear interpolation method
and define this new sequence as

}/271 é XTL?
(2.4)

Yoni1 2 (X + Xp1)/2.

From this sequence, as shown in Fig. 2.3 (b), two differential sequences {7},} and

{S,} are defined as

(2.5)

Note that T, is identical to S,, (i.e., T, = S,, = (X,,— X,,_1)/2) and the probability

distribution of T}, (or S,) is N(0,0%,/2(1 + p)). Since both {7} and {S,} are

Gaussian sources, the R-D functions are :

(2.6)
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Figure 2.4: The upper (lower) graph is for p = 0.9 (p = 0.1). Solid lines indicate
the R-D curve of the differential sequence ({Z,}) and dotted lines indicate the
R-D curve of the differential sequences after interpolation ({S,} and {7,,}).

In this example, since S,, and 7T,, are same, any information of S,, is not needed if
T, is provided. But in our original problem, the difference of neighboring pixels
of interpolated images is not same and in the CAI method, the coder does not
employ any additional information related to interpolation. Therefore we assume
that the mutual information of S; and 7j is not used during encoding for all ¢

and j. Then the rate distortion function achieved with this method is :

Ro(D) =2 Rp(D) = 10g2(2(1i—wp)D), 0<D< ﬁ .2

The main difference between above two methods (DPCM and DPCM after in-
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terpolation (DPCMI)) is the number of samples and the variance of sequences.
The number of samples encoded by DPCM is half of the number encoded by
DPCMI and DPCM has 4 times larger variance than DPCMI. The two methods
have trade-off since the smaller number of samples provides better coding per-
formance but the larger variance provides worse performance. Fig. 2.4 shows the
performance comparison of two methods with different AR coefficients. In the
figure, the performance of DPCM is better than that of DPCMI at higher rates
but is worse at lower rates. Note that the rates corresponding to the intersection
points of the two curves are the same but that the corresponding AR coefficients
are different.

Next, instead of the theoretical rate distortion curves, we consider the R-D
curves of general DPCM coders that use a uniform quantizer and an entropy
coder. We assume that a given quantizer has N quantization bins. In the DPCM
system, let each bin size be A (except top and bottom bins assuming that the
range of source is infinite), let the average MSE be d and after entropy coding,
let the average rate be r. In the DPCMI system, each bin size can be A/2 and
the average MSE is d/4 for T, since the maximum sample value of T,, is half the
maximum value for Z,. This is because T,, = (X,, — X,,_1)/2 = Z, /2. However
the number of samples in a given bin is exactly same as that in a corresponding
bin of Z,,, so the rate is still r after applying the same entropy coder. Therefore,

if the R-D curve of DPCM passes a point (r,d) then that of DPCMI passes a
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point (2r,d/4) (note that T,, and S, each have rate r in the DPCMI system).

This relation is formulated as

G(d)=-H(-), (2.8)

where GG and H are the R-D functions of DPCM and DPCMI, respectively. For
instance, after encoding, if G is as in (2.3) then we can get (2.7) by using (2.8). As
a result, the existence or location of the intersection point of DPCM and DPCMI
depends on the function GG. Note that the R-D performance of the difference
sequences is different from that of source sequences since the decoder only has a
quantized version of previous sample values. In an open loop DPCM case, the
quantization error accumulates as the process continues, although theoretically
the errors will cancel each other out in the long run [57]. But in transform coding
which we use for image coding (i.e., DCT or DWT), there is no error accumulation
and the distortion in a transform domain is the same as or close to that in a pixel
domain depending on the transform. Therefore this performance comparison can
be still valid for source sequences.

Note that the R-D function of the IAD method is calculated by using the
source sequence instead of the reference sequence (i.e., interpolated sequence).
The following shows that in the TAD method, the average MSE is decreased

after interpolation. Let us assume that the average MSE and the mean of the
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reconstructed sequence ({X,}) before interpolation are d and 0, respectively.

Then the average MSE of interpolated samples is calculated as

A A

2 — E<Xn - Xn>2 + E(Xn—l—l - Xn—f—l)z
4

Xn + Xn-{—l N Xn + Xn-i—l

E
( 2 2

)

d
=—. (2.9
- (29)
Since the number of interpolated samples is identical to that of original samples,
the average MSE after interpolation is reduced to 3d/4. Therefore after inter-
polation, the cross point in Fig. 2.4 can be moved to right and this means that

the proposed method provides better performance in a larger range of different

compression ratios.

2.3 Image transformation algorithm to reduce

redundancy

In order to avoid the redundancy introduced by CFA interpolation, we propose an
algorithm in which an image compression stage precedes the CFA interpolation.
The block diagrams of our TAD method and the CAI method are given in Fig. 2.2.
There are some other functions, such as white balancing and color correction, that
are performed in the image processing stage. These are shown as pre- and post-
processings in the figure. From the figure, it seems like the two algorithms are

almost same except the processing order, but the compression algorithm in each
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Figure 2.5: The detailed diagram of the encoding and decoding parts of the pro-
posed method. Luminance (Y) data needs several transforms due to the location
of them after format conversion, whereas chrominance (Cb/Cr) data can be coded
directly.

case is different because of the type of incoming data. Therefore our goal is to
transform the input data into a format suitable for general image coders. The
input data of our algorithm consists of only one color for each pixel, while in the
CAI method there are three color values for each pixel, obtained by interpolation.
In general image coders, it is assumed that incoming data is uniform (i.e., all
pixels have the same color) and that the image has rectangular shape. Our
goal is then to design a reversible image transform that can produce image data
suitable for coding (without interpolation). A detailed version of the encoding
and decoding blocks of the proposed method is shown in Fig. 2.5.

First, we propose a color format conversion algorithm since image coders
usually use YCbCr format. After format conversion, luminance (Y) data is not
available at every pixel, so that there are pixels that do not contain luminance

information. In order to make the Y data compact, a transform which removes
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those blank pixels is proposed. Then we show how to encode the resulting data
which no longer has rectangular shape. In this chapter, JPEG and SPIHT are

used in order to compare the performance of the CAI and IAD algorithms.

2.3.1 Color format conversion

In the CAI method, the data to be compressed has RGB format (obtained by
interpolating the CFA data). This data is converted to YCbCr format before
compression. In JPEG, normally 4:2:2 or 4:2:0 sampling is used and in JPEG2000,
chrominant coefficients in high frequency bands after wavelet transform are not
coded since human visual system is less sensitive to the chrominance data. In
the proposed algorithm, to avoid increasing the redundancy, the number of pixels
should not be increased after color format conversion. While there are several
different methods to achieve this, we choose a method such that 2 green, 1 red
and 1 blue pixels are converted to 2 Y, 1 Cb and 1 Cr pixel values. This is
reasonable since luminance data is more important than chrominance data and
the format conversion is reversible. We first propose a simple and fast method
based on 2 by 2 blocks and then propose more complex methods that provide

better performance.
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Figure 2.6: The gray region in (a) indicates the possible location of Y data after
the format conversion. (b) shows the distance between two green (or luminance)
pixels. (c) shows the location of Y and Cr (Cb) data in a 2 by 2 block.

2.3.1.1 format conversion based on 2 by 2 blocks

In this format conversion, each 4 pixel block contains 2 green, 1 red and 1 blue

pixels. Then two luminance and two crominance (i.e., Cb and Cr) are obtained

as follows.
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where, as shown inFig. 2.6 (b) and (c), Y*(G") and Y'"(G') indicate luminance

(green) data of the upper left corner and luminance (green) data of the lower right

corner in 2 by 2 CFA block. The coefficients, a3, and ay4; are half of standard

coefficients of RGB to YCbCr conversion and the others are the same. The format
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conversion matrix in (2.10) is invertible, by simply using the inverse matrix on
the YCbCr data.

We now need to decide what the location of these YCbCr pixels should be.
For the Cb and Cr data, each component could be located in any fixed position
in the 2 by 2 block, since only one value of each chrominance is generated for the
block. In the Y data case, however, one (Y*) should be located in the upper left
region since Y is the weighted average of G, R and B (as shown in Fig. 2.6
(a)) and the other should be located in the lower right region of the block.

In our algorithm, we put the Y data at each green pixel position because green
is roughly 60% of the Y data (the shape of the Y image is shown in Fig. 2.8 (a)).
The location of the Y data is important, since improperly located Y data induces
artificial high frequency components which can make the performance worse.

This method is simple and fast but YCbCr data of each 2 by 2 block depends
only on the RGB data in that 2 by 2 block. Therefore, the YCbCr data poten-
tially has more high frequency components than that generated by using bilinear
interpolation (because each block is treated independently, while in the bilinear
interpolation case each Y term is obtained from a larger set of pixels). The gen-

erated color components of bilinear interpolation are obtained by averaging the

45



same color components located in neighboring pixels. For example, green and

red color components at Bys in Fig. 2.1 are calculated as,

Gan — (Ga2+G44+G33+Gs3)
43 — 4 ’

(2.11)
Rys = (R32+334ZR52+R54) '

2.3.1.2 Format conversion based on larger blocks

In order to generate smoother YCbCr data, we can consider a whole image as a
block. After generating the RGB data for each pixel by using bilinear interpo-
lation Y, Cb and Cr can be calculated from the RGB data on green, blue and
red pixels respectively. These positions are chosen according to the degree of
influence of each color (i.e., the dominant color components of Cb and Cr are
blue and red, respectively). Because of the interpolation, the amount of RGB
data is increased but the amount of YCbCr data is not increased, since each pixel
position has only one component, either Y, Cb or Cr. This format conversion
is also simple but the reverse format conversion is difficult due to the bilinear
interpolation. To generate the original RGB data from the YCbCr data, a w - h
by w - h reverse format conversion matrix is needed, where w and h are the width
and height of an image respectively.

Although the decoding process (including reverse format conversion) can be

done in a system with high computing power (e.g., personal computers), the
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Figure 2.7: (a) Coding performance comparison of Lenna image using different
color format conversion methods. (b) Coding gain of the format conversion using
larger blocks as compared to the format conversion with 2 by 2 blocks. Luminance
data are coded by using SPIHT with shape adaptive DWT (SA-DWT) after
rotation transform and the PSNR is calculated with Y and Y in Fig. 2.5 .

matrix is too large and the reverse conversion may still be too time consuming.
In order to reduce the computational complexity, the above format conversion
method can be applied to smaller blocks generated by dividing the source image.
Since interpolation is done by using the pixels in the block, the column (or row)
of reverse format conversion matrix is reduced to W - H, where W and H are the
width and height of a block respectively.  The coding performance of the format
conversion with different block sizes is shown in Fig. 2.7. Since the interpolated
data at boundary pixels of each block is less smooth, the interpolation method
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Figure 2.8: Transformation of Y (luminance) image. In the figure, dark and
light gray pixels indicate Y data and white pixels indicate empty position. (a)
indicates quincunx located Y image after format conversion, (b) and (c¢) indicate
Y image after transform. In (b), each even column data is shifted to left odd
column and in (c), each pixel is rotated 45 degree clockwise.

with a smaller number of boundary pixels can give a better result. For example,
75% of Y data are on block boundaries when 4 by 4 blocks are used whereas
12.3% are on block boundaries when 64 by 64 blocks are used. Therefore as
shown in Fig. 2.7, the format conversion with larger blocks gives better results

than that with smaller blocks although the complexity of decoding is higher.

2.3.2 Nonlinear transform to remove blank pixels

After the color format conversion, the Y values are not available all the original
pixel positions (since the Y data is located only in the position of the green pixels),
so general image compression methods cannot be directly applied to compress

the Y image. Therefore another reversible transform is needed to change the
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quincunx located Y pixels to normally located Y pixels (i.e., so that we obtain a
Y image with no blank pixels). As in Fig. 2.8 (b), one possible simple transform
is a horizontal pixel shift where pixels in even columns are shifted to the left odd

column and all even columns are removed. This transform can be formulated as

N8

, if x = even,

X Y
if ©+y=odd, = - (2.12)

Y

8
ML
—

, if = odd,

where (z,y) and (X,Y’) are the pixel positions in the images before and after
transformation, respectively. Here we assume that the origin is the lower left
corner of an image. A vertical shift transform can be similarly defined, but we
focus here on the horizontal shift transform.

After the transform is performed, a vertical edge causes artificial high fre-
quency components in vertical direction and this makes coding performance
worse. Note that if a vertical shift had been chosen the same problem would
arise with respect to horizontal edges. Thus, under JPEG coding with a high
compression ratio, most of this artificial high frequency information may be lost.
In Fig. 2.8 (b), the line shaped boundary between dark and light gray is changed

to a zigzag shaped boundary. Spatially weak correlation is another reason to
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make the result worse. If the distance of adjacent pixels in a CFA is assumed
to be 1 then, after horizontal shifting, the vertical and horizontal distances of
adjacent pixels in the Y data are v/2 and 2 respectively (see Fig. 2.6 (b)).

An alternative simple transform to remove blank pixels among Y data, which

does not pose these problems, is 45 degree rotation formulated as

+ , if t+y=odd,  (2.13)

where w indicates the width of an image. As shown in Fig. 2.8 (¢), after rotation,
Y data is concentrated on the center of an image with a oblique rectangular
shape. This transform does not induce artificial high frequencies and the vertical
and horizontal distances of adjacent pixels are now /2. But since the data are in
an oblique rectangular shape area, some redundancy is added when the boundary
pixels are coded. This is addressed in the next section.

The performance of the two methods after coding is shown in Fig. 2.9. Since,
in JPEG coding (shown in (a)), high frequency components introduce more er-
rors due to large quantization values, the result of the method inducing more
high frequency components is worse. Also in JPEG coding, an image is effi-
ciently coded by using EOB (end-of-block). When an image has additional high

frequency components, the EOB occurs later in the zigzag scan on average and
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Figure 2.9: PSNR difference of luminance data between the rotation and hori-
zontal shift methods after compression by using (a) JPEG and (b) SPTHT. 2 by
2 block format conversion is used in both cases.

thus the overall rate tends to increase. As expected, the horizontal shift trans-
form generates more high frequency components and gives a worse result. For
the “Baboon” image, however the image itself contains significant high frequency
information and most frequency coefficients have to be coded (i.e., EOB coding
does not help much), therefore the induced high frequency components by the
shift method result in a less significant panalty than for other images. Also, due
to the added redundancy coming from the data shape of the rotation method,

the result of the shift method can be better in cases where the artificial high

frequency components do not have a larger effect on the coding result (as in the

o1



“Baboon” image). Contrary to JPEG coding, SPTHT uses the same quantization
for all frequency bands but achieves compression by transmitting bit-planes in
order of significance. Therefore the coding performance of the shift method is
only slightly worse than that of the rotation method. But if the source is simple
(i.e., not having large energy in high frequency bands) then the shift method
provides worse energy compaction and so the result is worse (as shown in the
case of “Lenna” image).

In Figs. 2.9 (a) and (b), the coding gain of the rotation method is decreased as
the bit-rate is increased, except at very low bit-rate. In the low bit-rate region,
small coefficients are quantized to zero, therefore most of coefficients are not
transmitted because an EOB has been reached (in JPEG coding) or only a small
number of coefficients is coded (in SPTHT coding). But in the shift method,
many coefficients are large and cannot be quantized to zero. Therefore higher
coding gain is achieved with the rotation method. As quantization values become
smaller, the coefficients of the rotation method (which are quantized to zero in
a low bit-rate region) are no longer quantized to zero and the bit-rate increases
sharply. Instead, most coefficients of the shift method are already non-zero (in
the low bit-rate region) and the bit-rate is increased more slowly. Therefore the
coding gain of the rotation method is reduced as the bit-rate becomes higher.
Although in the “Baboon” case, the performance of the shift method is better,

this is due to the redundancy of the rotation method, so the coding gain is
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decreased more as bit-rate becomes higher. In SPIHT coding with very low bit-
rate, only a few most significant bit-plane can be coded and the coded data are

similar to each other, therefore no coding gain is achieved.

2.3.3 Data cropping for images obtained by the rotation

transformation

After the horizontal shift transformation, the shape of Y data is still suitable
for coding as in Fig. 2.8 (b). But as in Fig. 2.8 (c), the shape of Y data after
the rotation transform is not rectangular and thus coding the whole rectangular
region that includes the oblique rectangular shape of Y data would result in
some inefficiency in the coding. Therefore a proper cropping method is needed

to remove the data outside of the oblique rectangular area containing Y data.

2.3.3.1 Data cropping for JPEG (DCT based coders)

In JPEG, the size of a DCT block is 8 by 8 and blocks that consist of blank pixels
only (blank blocks) do not need to be coded. In addition, we do not need to send
any side information about the location of Y data since it can be calculated at
the decoder by using the size of images. As shown in Fig. 2.8 (c), the number
of blank blocks depends on the width and height of the image and 6 bits (2 bits

for a zero DC value and 4 bits for EOB) are needed to code a blank block when
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standard Huffman tables of JPEG are employed. In case of 512 by 512 images,
out of 4096 blocks, the number of blank blocks is 1984 and without coding blank
blocks, we can save 1488 bytes. The blocks containing boundary pixels of Y
data (boundary blocks) also contain blank pixels since Y data are in an oblique
rectangular shape. As a result, compared to the shift method, the number of
blocks to be coded is increased by (w + h)/16 in case that the width and height
are multiples of 16.

Proper padding methods are needed for boundary blocks since the discon-
tinuity between blank and data pixels in the block creates artificial edges that
require a significant coding rate. Because boundary blocks have Y data only in
the position of an upper or lower triangular region, padding can be simply done
by diagonal mirroring. Better performance can be achieved by using low-pass
extrapolation (LPE) [32] or shape adaptive DCT (SA-DCT) [65][32][70]. LPE is
relatively simple and provides good R-D performance whereas SA-DCT provides
better performance but is more complex. In our case, after the rotation trans-
form, The data pixels in the boundary blocks are always in a triangular region
of the block corner. Since data pixels can be moved to the upper left corner by
simple rotation, SA-DCT can be easily applied. Also after SA-DCT, only DCT
coefficients in the upper left triangular region are non zero so that an EOB can

be inserted early on the zigzag scan.
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Figure 2.10: The coefficients map after SA-DWT. Gray regions indicate mean-
ingful coeflicients and black and white regions indicate blank coefficients.

2.3.3.2 Data cropping for SPIHT (DWT based coders)

Contrary to JPEG, SPTHT is not a block based coder and so the method used with
JPEG cannot be applied. Therefore we need to introduce new coding method
in order to code Y data in the oblique rectangular area only. In the still image
coding of MPEG-4, arbitrarily shaped objects are coded by using shape adaptive
DWT (SA-DWT) [38]. One of the good features of SA-DWT is that the number
of coefficients after SA-DWT is identical to the number of data pixels. In order to
code data pixels only, we employ SPIHT with SA-DWT. But without modifying
entropy coding in SPIHT, some redundancy is still added since SPTHT uses a

two by two block arithmetic coding algorithm.
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In Fig. 2.10, only the gray regions contain meaningful coefficients after SA-
DWT. Out of 16 two by two blocks in the lowest frequency band, only 4 blocks
located in each corner consist of blank coefficients. Since all descendants of these
blocks (white regions in the figure) are blank coefficients, these regions are not
coded. But blank coefficients in black regions in the figure are involved in coding
due to the entropy coding scheme of SPITHT and since they are not skipped some
redundancy is introduced.

As a consequence of the redundancy induced by coding blank data in JPEG
and SPIHT, the shift transform outperforms the rotation transform in some cases

as shown in Fig. 2.9.

2.3.4 Influence of chrominance data over luminance data

Fig. 2.11 shows that the IAD algorithms also give a better result in chrominance
data coding. In the TAD algorithms, one Cb (Cr) data is chosen out of 4 CFA
pixels and the width and height of the Cb (Cr) image are w/2 and h/2, respec-
tively. Therefore the data size is reduced to a quarter of that of the conventional
technique whereas the pixel distance is doubled.

But contrary to the CAI method, in which the coding results of luminance
and chrominance data are fully separated, chrominance data with large distortion

can add distortion to luminance data after interpolation and vice versa.
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For the case of format conversion with 2 by 2 blocks, the coding error in RGB

data is calculated as follows.

- - - - -1 r -

e(GU) an 0 a3 au e(Y™)
e(G') 0 ann a;z au e(Y')
_ , (2.14)
e(B) a3y Az (33 A3 e(Cb)
e(R) aq1 Qa1 Q43 Qaq e(Cr)

where e(+) is the error of each component due to lossy coding. Since the final Y
data (after interpolation) is calculated from the distorted RGB data, i.e., from
distorted YCbCr data, the error in the final Y data depends on the quantization
errors in both Y and Cb (Cr) data.

Fig. 2.12 shows that the influence of chrominance error is larger in the case
of 2 by 2 format conversion. The reason is that the Cb (Cr) data after the 2 by
2 format conversion has more high frequency components which means that at
the same rate the distortion is higher than if a 64 by 64 block is used. Also in
this figure, the PSNR of chrominance data with high bit-rate Y data drops more
than that with low bit-rate Y data since in the case of high bit-rate Y data (the

upper curve), most of errors are induced from the error of chrominance data.
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2.3.4.1 Bit allocation between luminance and chrominance data

In SPIHT, each component is coded separately and there are no explicit mecha-
nisms for bit allocation, whereas in JPEG bit allocation to each component cannot
be explicitly controlled and is determined by the chosen quantization tables and
the data characteristics. Therefore in SPIHT, it is necessary to determine the
bit allocation between luminance and chrominance data based on human visual
sensitivity to each component. Moreover, in the proposed methods, the bit-rate
of one component affects the quality of the other components, so the overall
performance is changed depending on the bit allocation.

Here, we simply consider bit allocation based on the quality of luminance data
since the human visual system is more sensitive to luminance data. Fig. 2.13 (a)
shows the quality change of luminance data after interpolation depending on
the overall bit-rate and the bit-rate of the luminance data. In the figure, the
lower curves are fairly flat, but the upper curves drops sharply and some curves
intersect. This means that the effect of chrominance data is larger when the
bit-rate of luminance data is higher. Thus under a certain bit budget constraint,
we need to decrease the bit-rate of luminance data to maximize the quality of
luminance data. As in Fig. 2.13 (a), if the Y data can be coded with only 6
different rates, then, from the figure, we can choose the best bit allocation. This

means that if we have the results of all possible rates, we can find the optimal
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bit allocation under any given bit budget. Similar to Fig. 2.13 (a), (b) shows
the quality change of chrominance data after interpolation. Although the curves
drop sharply, this happens in the range where the bit-rate of luminance data is
relatively low comparing with that of chrominance data. In general, the bit-rate
of luminance data is higher and this drop does not have big effect under proper bit
allocation (i.e., the bit-rate of luminance data is higher than that of chrominace
data). This also guarantees that we can focus on the quality of luminance data
since under the proper bit allocation, the quality change of chrominance data is
small.

Another conclusion we can make from the figure is we do not need to be too
concerned with the bit allocation when overall bit-rate is not very high (as shown
in Fig. 2.13 (a), only the curves corresponding to high bit-rate intersect). Since
the R-D characteristics are different for each image, we fixed the bit-rate of Cb

(Cr) data to be a quarter of that of Y data.

2.4 Experimental results and comparison

In order to confirm the validity of the IAD algorithms (i.e, horizontal shift trans-
form with 2 by 2 block format conversion and rotation transform with 2 by 2
and 64 by 64 block format conversion), we implemented these algorithms and

compared the results with those obtained with CAI (JPEG with 4:2:2 format
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and SPIHT) methods. Due to the lack of CFA raw data, we generate CFA raw
data by using test images such as “baboon”, “lenna” and “macaw” (H : 512, W
: 512, 24 bit color, 786.432KB). Actually, what we obtain is not CFA raw data,
since in these data all image processing functions, except interpolation, have
been already done. But, in this chapter, we mainly focus on interpolation and
compression methods, so other image processing parts are not considered. Our
results are the same as the results achieved when all image processing functions
are done before compression and interpolation. The results of the proposed and
conventional algorithms are compared using the PSNR of luminance and chromi-
nance data at each target bit-rate. As we mentioned in section 2.2, in order to
calculate PSNR, we consider bi-linear interpolated images without compression
as the source images. The CAI method compresses this interpolated image and
the TAD methods use the same interpolation after decompression.

As shown in Fig. 2.14 (a),(c) and (e), the IAD algorithms achieve better lu-
minance PSNR under all different bit-rates except for very low bit-rates. With
JPEG compression, the PSNR of the shift method drops sharply and the perfor-
mance of this method is worse than that of CAI methods in case that the bit-
rate is approximately under 50KB (i.e., the compression ratio is roughly 15 : 1)
whereas the rotation methods outperform the CAI method under all other com-
pression ratios used in [14]. With SPTHT compression, the performance of shift

and rotation with 2 by 2 block format conversion methods is similar (see Fig. 2.9)
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and they outperform the CAI method when the bit-rate is over 20KB or 25KB
(i.e., a compression ratio is 39 : 1 or 31 : 1) as shown in Fig. 2.15. As expected,
the rotation with 64 by 64 block transform method gives a better result than
other proposed methods but it needs high computing power at the decoder side.
Under same bit-rate, IAD algorithms can use a lower compression ratio (or higher
bit-rate per pixel) since the TAD algorithms only use approximately half of lu-
minance data. This is the reason why the TAD methods outperform the CAI
method.

As shown in Fig. 2.14 (b), (d) and (f), in chrominance data cases, the PSNR
gain is even higher (though PSNR is not so meaningful in color components.). In
the CAI algorithm, if the 4:2:2 format is used for JPEG compression then two
adjacent pixels use same color data and the some color information is lost. But
in the IAD algorithm, color format conversion is reversible and all color infor-
mation can be presented. Although, even in the CAI method, there is no color
information loss if JPEG with 4:4:4 format is used, the bit-rate for the color in-
formation is increased and so, by using this increased bit-rate, lower compression
ratio can be applied in the TAD algorithm. In our experiments, chrominance data
compression with 4:4:4 format (i.e, no data loss during format conversion in the
CAI algorithm) is tested with SPTHT compression. Since the size of chrominance

data of the CAI algorithm is 4 times larger than that of proposed ones, the bit
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budget per pixel of TAD algorithms is 4 times larger than that of conventional
one and this gives a large PSNR gain.

Although shift and rotation with 2 by 2 block transform provide exactly same
chrominance data (since both transforms use the same 2 by 2 color format con-
version), the chrominance PSNR of both algorithms are not identical. This shows
that the luminance distortion also affects the quality of chrominance data.

From Fig. 2.14, one common phenomenon is that the PSNR gain becomes
larger as the bit-rate increases. This can be explained by the color format con-
version and spatial correlation. In the TAD algorithms with 2 by 2 block format
conversion, the Y data in green position is generated by using only one green
at the position and one red and blue neighboring pixels to recover each color
component after decompression. This conversion creates more high frequency
components than that of a conventional bilinear interpolation method.

Also, more high frequency components are introduced by lower spatial corre-
lation. DCT blocks of Y data in our algorithm correspond to a larger area and
therefore have weaker spatial correlation (under the assumption that an image
has strong spatial correlation.) [31]. As a result, the proposed algorithm has more
high frequency components which leads to higher distortion under JPEG com-
pression, since in JPEG high frequency components are quantized more coarsely.
As the compression ratio becomes lower, the CAI method can keep more high fre-

quency components and so the bit-rate of the compressed image increases rapidly.
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Highly spatially correlated images have small high frequency coefficients which
become zero under high compression ratio and leads to efficient coding (with
EOB). But if the compression ratio becomes lower, then high frequency coeffi-
cients components have non-zero values after quantization (even if they are small)
so they cannot be efficiently compressed. Therefore we can get higher PSNR gain
(the difference between IAD algorithms and a CAT algorithm) as compression ra-
tio becomes lower. This can also explain that the “Baboon” image (low spatial
correlation) has higher PSNR gain than the “Lenna” and “Macaw” images (high
spatial correlation) under high compression ratio.

In SPTHT, DWT coefficients are coded from the highest bit-plane and so large
high frequency coefficients can be coded without resulting in large increases in
distortion even at low bit-rate coding. But due to weak correlation, the TAD
algorithms generate larger high frequency coefficients and cannot be efficiently
coded in low bit-rate coding. Similar to the result of JPEG coding, the “Baboon”
image has a higher PSNR gain than other images since the image has weaker
correlation than other images.

In addition to the higher PSNR gain and lower complexity, the IAD algorithms
have other advantages such as lower blocking artifact after JPEG coding and fast
consecutive capturing. Lower blocking effect under the same bit-rate is achieved
by lower compression ratio, interpolation and different block shapes. Because in-

terpolation is done after decompression, this function can reduce blocking artifact
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similar to a de-blocking processing after JPEG decompression. Luminance data
and chrominance data use different shapes, which may also help to reduce block-
ing artifacts. Also fast consecutive capturing is possible since the compression
time is shorter by compressing only around half of Y data and interpolation (in
case of 2 by 2 format conversion) and post processing functions are not needed

during the capture process.

2.5 Comparison with adaptive interpolation

From the compression viewpoint, the bilinear interpolation is a good method be-
cause it results in smoother (and thus easier to compress) images. Also in the
IAD algorithms, the color components generated by using the bilinear interpo-
lation have an error that results from averaging the error of neighbor pixels, so
that the average distortion of generated color components is lower than that of
coded color components (similar to the 1-D case shown in (2.9)). This is also
confirmed by the experimental results shown in Fig. 2.7 (a) and Fig. 2.14 (c)
(SPIHT). Note that the two figures have different horizontal axis and the rate
used in Fig. 2.14 is 1.5 times larger than that of Fig. 2.7. The result verifies that
PSNR is increased after interpolation except at high bit-rates (where round-off

error plays an important role due to small coding error).
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Although the bilinear interpolation is simple and fast, it works like a low
pass filtering and does produce smoothing of edges. To preserve more edge infor-
mation, several different adaptive interpolation algorithms have been proposed.
Depending on the local information, adaptive interpolation algorithms take a dif-
ferent interpolation method and use the correlation of different color components.
After applying the adaptive interpolation, the interpolated image has more edge
information (i.e., more high frequency components) and it cannot be easily com-
pressed. In this sense the TAD algorithms have an advantage. Note that the
IAD algorithms perform interpolation after decoding, so the coded data is in-
dependent of interpolation algorithms. But due to lossy compression, IAD and
CAT algorithms have different data before the interpolation. Therefore it could
happen that they have different edge information and take a different directional
interpolation method for pixels at the same position. This makes generated color
components have large distortion. Also, the error of one color component is
involved in the interpolation of other color components and the distortion of gen-
erated pixels can be increased. As a result, by using the adaptive interpolation,
the IAD algorithms achieve some gains from data smoothness before compression
(especially in the case of rotation with 64 by 64 block format conversion) but may
lose in perpermance from choosing different directions during interpolation due

to distorted data.
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To verify the performance of the IAD algorithms with the adaptive interpo-
lation, we consider 3 different adaptive interpolation algorithms constant hue-
based, gradient based and median-based interpolation [50].

Constant hue-based interpolation is proposed by Cok [6] and Kimmel [33],
where hue is defined by a vector of ratios as (R/G, B/G). In this algorithm,
the green color component is used as a denominator and a small error of the
green component may induce a large error in hue, especially when green values
are small. Therefore the IAD algorithms do not provide good performance when
this interpolation is applied.

Gradient based interpolation is proposed by Laroche and Prescott [34]. In this
algorithm, at first, green components on blue (red) pixel positions are determined
by using the directional bilinear interpolation, where the direction is selected
by the gradient of neighboring blue (red) components. After determining green
components, blue (red) components are interpolated from the differences between
blue (red) and green components. Fig. 2.16 shows the coding results of IAD
algorithms. With JPEG compression, the performance of IAD algorithms (except
rotation with 64 by 64 block format conversion) is worse than that of the CAI
algorithm since different direction is determined by large error in high frequency
components and blocking effect and the error of green components also affects red
and blue components. But with SPIHT compression, the coding error is evenly

distributed and different directional interpolation is reduced. Therefore as shown
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in Fig. 2.16 (d), the IAD algorithms outperform the CAI algorithm although the
gain is smaller than when bilinear interpolation is used (shown in Fig. 2.15).

The performance is also tested with Median-based interpolation (proposed by
Freeman [13]) which employs two step processes. The first pass is the bilinear
interpolation and the second pass is selecting the median of color differences of
neighboring pixels. Fig. 2.17 shows the coding results of IAD algorithms with 3 by
3 median filter. Similar to the gradient-based interpolation, the IAD algorithms
provide worse results when JPEG is applied. But with SPIHT, IAD algorithms
still provide better results up to 20 : 1 or 40 : 1 compression ratio depending on
the format conversion methods.

As a result, the TAD algorithms with SPTHT provide better results with the
gradient based and median-based interpolation. But due to coding inefficiency,
irregular coding error and blocking effect, the IAD algorithms with JPEG take
the different direction of interpolation for each pixel, therefore the performance

1S worse.

2.6 Conclusion

In this chapter, we investigated the redundancy decreasing method by merging

an image processing stage and an image compression stage. Several color format
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conversion algorithms and shift and rotation transforms are introduced to com-
press CFA images before making full color images by interpolation. We showed
that proposed algorithms outperforms that of the conventional method in full
range of compression ratio of JPEG coding with the bilinear interpolation and
up to 20 : 1 or 40 : 1 compression ratio (depending on the color format conversion
and interpolation methods) with SPTHT coding when the bilinear, gradient based
and median-based interpolation are applied. Also we analyzed the reason that
PSNR gain becomes higher as compression ratio becomes lower and checked it
with a 1D DPCM sequence. Because the proposed algorithms use only around
a half size of Y data and only need additional simple transform, the computa-
tional complexity can be decreased. Also, with this algorithm, reducing blocking

artifact and fast consecutive capturing can be achieved.
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Figure 2.11: Coding performance of chrominance data ((a) Cb and (b) Cr) of
CAI and TAD algorithms. SPIHT is used as a compression method. R-D data
are calculated from Cb and Cb (Cr and Cr) in Fig. 2.5.
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coded with different bit-rate. The vertical axis indicates the PSNR of Y data
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methods.
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Chapter 3

Online Rate Control in Digital Cameras for
Near-constant Distortion based on a MMAX

criterion

In this chapter, we address the problem of online rate control in digital cameras,
where the goal is to achieve near-constant distortion for all the images. In digital
cameras, it is desirable to allow users to take a pre-determined number of images
that can be stored within the given memory size, and captured/stored within a
short delay, so that each image can be stored before the next image is received.
Therefore, we need to define an online rate control that is based on the amount of
memory used by previously stored images, the current image, and the estimated
rate of future images. In this chapter, we propose an algorithm for online rate
control, in which an adaptive reference, a “buffer-like” constraint, and a mini-

mization of maximum distortion criterion (MMAX) are used in order to achieve
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near-constant quality. The adaptive reference is used to estimate the R-D statis-
tics of future images and the “buffer-like” constraint is required so that enough
buffer space is preserved for future images. We show that using our algorithm to
perform online bit allocation for each image in a randomly given set of images
provides near constant quality. Also, we show that our result is near optimal
when a MMAX criterion is used, i.e., it achieves a performance close to that
obtained by applying an off-line optimal rate control that assumes exact knowl-
edge of the images. Suboptimal behavior is only observed in situations where the
distribution of images is not truly random (e.g., if most of the “complex” images
are captured at the end of the sequence.) Finally, we propose a T-step delay rate
control algorithm and using the result of 1-step delay rate control algorithm, we

show that this algorithm removes the suboptimal behavior.

3.1 Introduction

Digital cameras are designed so as to mimic the operation of conventional cam-
eras, which can take a pre-determined number of photos per roll. Thus for digital
cameras it is desirable to enable the user to take a pre-determined number of im-
ages that can all be stored in the given memory size. Due to memory restrictions

and time delay considerations, it is assumed that previously compressed images
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will not be re-compressed and that images are compressed immediately after be-
ing captured and before the next image is received. Therefore, the bit allocation
for digital cameras we consider here can be defined as an on-line bit allocation
under constraints on the total memory and on the number of images. Some-
times, the photos taken by digital cameras are downloaded to other media such
as a PC before the pre-fixed maximum number of images has been captured and
stored. For this case, methods to improve the quality of the images using the
remaining memory have been studied [17]. By using embedded quantizers, one
image is saved twice in different memory areas and, during the decoding process,
the quality of the output is improved by using both images. In this chapter, we
assume that a pre-fixed maximum number of images is taken. That is, our goal
is to determine the number of bits to use for each incoming image, given that the
total number of images and the memory are fixed, and to do so in such a way as
to provide as constant a quality as possible.

In order to solve this problem, we first need to select an appropriate distortion
metric. As explained in section 1.2, there are three types of criteria that have
been used for optimal bit-allocation, namely, minimization of average distortion
(MMSE), minimization of maximum distortion (MMAX) and minimization of
distortion under lexicographical constraints (MLEX) [47]. MMSE is by far the
most popular criterion to evaluate the performance of image/video coding al-

gorithms. As a consequence, optimal bit allocation under various constraints
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for the MMSE criterion has been extensively studied in the literature. Exam-
ples include bit allocation for arbitrary inputs and a discrete set of available
quantizers [64], bit allocation for dependent quantization [51], and optimal bit
allocation under buffering constraint [48]. Although the MMSE criterion gives
smallest total distortion for a given budget and efficient algorithms are available,
it does not guarantee the constant or near-constant level of distortion that may
be more important for human viewers, while the MMAX and MLEX criteria are
better suited for this purpose [58]. Solutions for the bit allocation problem under
the MMAX criterion for both independent [41] and dependent quantizers [60]
have been studied. The MLEX criterion has been proposed as an extension of
MMAX [20]. This criterion involves minimizing the maximum quantization value
and then minimizing the second highest quantization value and so on, while the
MMAX criterion aims to minimize the maximum distortion. Based on the MLEX
criterion, real-time VBR rate control for MPEG video has been studied [19].

In a digital camera application, because each image will be viewed indepen-
dently, it is desirable to provide very consistent quality, so that no image appears
to have significantly worse quality than others. In terms of bit allocation, this
means that bits should be allocated iteratively to reduce the distortion of the
worst (highest distortion) image. From this perspective, for digital cameras,
either the MMAX or the MLEX criteria are more suitable than the MMSE cri-

terion. Moreover, unlike video encoders, we do not need to consider buffering
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constraints because there is not strict time restriction for decoding consecutive
images stored in digital cameras, while a video sequence should be decoded for
being displayed at a certain frame rate.

Therefore, if we knew in advance all the images to be stored in the camera
then the bit-allocation problem would be exactly the same as that of finding the
optimal bit allocation given a set of discrete quantizers for either the MMAX
or MLEX criterion. Moreover in an off-line optimal bit-allocation scenario, due
to the lack of buffering constraints, and the independent quantization of the
images, the solution is relatively straightforward. For example, under the MMAX
criterion, the problem is equivalent to finding the minimum bit rate under a given
maximum distortion constraint,

R*(Dpae) = min R(xy,---,xn), 8t : D(z1, -+ ,2n) < Doz (3.1)

21, TN

and then solving this problem iteratively with lower maximum distortion con-
straints until the available bit budget has been exhausted [58].

Clearly, in real-world scenarios the complete set of images is not available and
thus we are faced with the task of making decisions on incoming images, without
any knowledge of future images, and still trying to meet a MMAX optimization
criterion. Moreover, we cannot change the allocation for those images that have

already been coded.
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In this chapter, we address the problem of online rate control in digital cam-
eras. In particular we provide a “buffer-like” constraint to keep enough memory
for future images. Our goal is to determine the online bit allocation for each im-
age such that near constant quality is achieved by using a MMAX optimization
criterion without violating given restrictions such as the fixed size of memory
and the pre-determined number of images. We show that the result of the pro-
posed online method is better than that of other methods such as constant rate,
constant quantizer, and constant distortion.

Under the assumption that a larger size working memory may be available
in some cases, we propose a T-step delay rate control algorithm that uses the
information of 7' known future images for compressing a current image. (Here,
the current image is the image to be compressed and known future images are
images that are in a working memory and will be compressed after the current
image.) We also show that the result of the proposed 1-step delay method (i.e.,
there is one known future image) leads to much better results the online method
without delay.

This chapter is organized as follows: in section 2 an online bit allocation
algorithm is presented. Experimental results are provided as demonstration of
the validity of our algorithm in section 3. Finally, the conclusion of this work is

in section 4.
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3.2 Online bit allocation

In order to determine the desirable distortion for a particular image that will
guarantee constant or near-constant distortion for all images, we first need to es-
timate the rate-distortion (R-D) characteristics of future images. In video coding
it is reasonable to expect that images within a video scene will have similar R-D
characteristics, and thus the current image characteristics are a good indication
of those of the next image. However no such assumptions can be made in a digital
camera environment. Instead, we can assume that the future images may have
R-D characteristics that correspond to the average of all images taken so far by
the digital camera. Under the assumption that the size of the image is same, we
can consider that the R-D characteristics of the images, e.g., the distortion for a
given rate, are independent identically distributed random variables. So, if the
number of images is large enough then, by the weak low of large numbers, the
mean value can be determined by the average of all images [9] [69]. Therefore the
average R-D characteristics is determined by the average rate of the images that
have been captured under given distortion by the current image. In the discrete
quantizer case, the distortion determined by each quantizer index is different for
each image. Therefore, an interpolation method is needed to get the average

bit-rate of a given distortion.
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Obviously, this estimation is not accurate in general and, as a result, this can
lead us to coding images with a distortion below what would be desirable. Assume
for example that in a set of captured images, the most complex images (i.e., those
for which high quality requires high rate) are captured first and the simplest
images (high quality can be achieved with lower rate) are captured towards the
end. Then, if we only use information about past images, an optimal bit allocation
cannot be achieved, because we will overestimate the complexity of future images
and therefore allocate fewer bits than necessary to the initial ones.

We do not expect these situations to occur often, under the assumption that
image complexity can be roughly random for a given set of images. However, we
do define some additional constraints for our allocation problem to prevent that
situations such as the one described above have a negative impact on quality.

Consider the extreme case of a high complexity image. For high complexity im-

h

ages, let R . be the minimum rate that has to be provided in order to achieve the

h

minimum acceptable quality, which can be determined by a visual test. If R},
is the same as the average rate of each image (i.e., higher quality is guaranteed
for high complexity images), then the distortion is always better than that of a
constant rate method (since the guaranteed bit-rate for high complexity image
is at least the bit-rate used in the constant rate method). But the flexibility of

bit-rate of each image is reduced since we need to reserve more bits for future

use and so the resulting distortion has large variation. Conversely, if R . is very
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Figure 3.1: The lines from the lower left corner indicate the memory occupation
of the first image determined by given quantizers. The lines from the upper right
corner indicate the average memory occupation by N — 1 unknown images with
the same distortion. The solution is the line that has minimum distance between
two lines under the same distortion. (In this case, d(i — 1) is the solution of the
first image.)

small, then there is enough memory to keep the distortion constant, but if the

h

solution meet R} . . then the quality of the image may not be acceptable.

h

By using R, ,,, we can define a useful bound. Refer to Fig. 3.1, where we
assume the first image in a set is coded and there are N — 1 images remaining.

Without any additional knowledge aside from R”, we can then introduce the

n
following constraints. The worst case scenario is that all the future images are

high complexity, and we would like to guarantee that the minimum acceptable

quality can be achieved for all future images even in that case. Thus, when coding
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h

image k we need to ensure that there are at least (N — k) - R, bits remaining.
This is represented by the top solid line in Fig. 3.1

With the above “buffer-like” constraint we have imposed a constraint that
would tend to avoid poor quality under worst case circumstances (i.e., in case that
the complexity of images is not random). We now explain our online algorithm
to ensure near constant quality under this constraint.

Let N be the number of images to be stored and M be the size of the memory.
In Fig. 3.1, each of the lines that start from the lower left corner (LLL) correspond
to the bit rate of image 1 under each available quantizer. The lines that start
from the upper right corner (LU R) represent the estimated bit rates of the future
images under the assumption that they all have the same characteristics as the
first image. Each line again corresponds to a given quantization choice. For
example, d(i) indicates the distortion of image 1 under the i** quantizer and (4)
indicates the bit rate under the same quantizer where large quantization index
means lower distortion. Because the LUR are obtained by subtracting allocated
rate from the total rate the rate for each image from image N to image 1, the
order of the LUR is opposite to the LLL. As an example, if quantizer ¢ requires
a large number of bits then the LUR corresponding to this quantizer will be low,

since at frame k this line indicates rate available for the first £ frames, assuming

the last N — k use quantizer 1.
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After capturing one image, we can assume that the image sequence will con-
tain this image and the N — 1 images that have the average R-D characteristics.
Refer again to Fig. 3.1, where we plot for image 1 all possible quantizer alloca-
tions and their corresponding distortion. Then for the remaining N — 1 images
we plot the bit rate demand if all images were coded with the same quantization
scale and had the average R-D characteristics. For example, if all future images
were coded with quantizer ¢ we would not have enough memory to accommodate
them (assuming they all have average R-D characteristics.) Conversely, if quan-
tizer ¢ — 2 is used, sufficient rate is available for all remaining images. Our goal
then is to choose, given the expected R-D characteristics for the future images,
a quantizer for image 1 such that (i) the upper bound is not violated, (ii) the
difference between the quality of current image and future images is minimized.
This second condition is aimed at achieving near constant quality in the set of
images. If we have an infinite number of quantizer choices then one of the LLL
can meet one of LU R that has the same distortion. But, in the discrete quantizer
case, this usually does not happen. Therefore, for a discrete set of quantizers, the
optimal solution would be to choose the quantizer i such that the lines (LLL and
LUR) are closest to each other at frame &, with the LUR being above the LLL.
Note that each of the algorithm, for frame k, the k — 1 first frames are assumed
fixed, and the LLL are started from the current buffer position (see Fig. 3.2).

For example, in Fig. 3.1 if all future images are coded with quantizer ¢ we would
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Figure 3.2: This graph shows the change of the solution depending on the bit
allocation to the previous images. The lines originating from point A indicate
the total memory occupied by the first k& images for each quantization choice
for image k. The lines from the upper right corner indicate the average memory
occupation for N —k unknown images with the same average R-D characteristics.
The solution is the line that has minimum distance between two lines under the
same distortion. (In this case, d(i—2) is the solution for the £ image even though
the image is same as the first image in Fig. 3.1 and the average R-D characteristics
in Fig. 3.1 is used.) Rysea(k — 1) indicates the total memory allocated to the first
k — 1 images.

not have enough memory to accommodate them (assuming they all have average
R-D characteristics.). So, in this example, the optimal solution is d(i — 1).

More formally, our problem to find a quantization value

gx = argmin | r(gxi) + (N — k) x R(d(gri) — M | (3.2)

7

where k is the index of the image, i is the quantization index, r(g;) is the

bit rate of the given q;, d(qy;) is the distortion of the given qx;, My denotes the
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remaining bits at the k* image and R(d(qy;)) is the average bit rate for the future
images determined by d(gx;). If there is more than one solution then the solution
that is nearer to the constant line (the dotted line in Fig. 3.1) is chosen for a
current image and future images.

Refer to Fig. 3.2. Here the remaining memory is smaller than the average
and this remaining memory should be shared by the k' image and the N — k
future images. Therefore the optimal solution can be changed even if we use the
same average R-D characteristics for all images (i.e., the R-D characteristics of
previously stored images are not used to refine our estimation of the average R-D
characteristics) and the R-D characteristics of the k* image is same as that of
the first image in Fig. 3.1. Although the optimal solution can be changed by the
memory occupation of the previously stored images, this rate control based on
the current utilization memory may be too slow and not allow us to keep the
memory state under the given upper bound. The reason is that the distance
between the rates corresponding to consecutive distortions for future images (e.g.
l3) is much larger than the distance between the rates of consecutive quantizers
for the current image (e.g. [y). For example, the rates difference of the future
images are N —1 times larger than that of image 1 (if image 1 has the average R-D
characteristics) since this difference is linear with the number of future images.
Therefore, in the beginning part of the image sequence, the solution is determined

dominantly by the average R-D characteristics for the future images. In order
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to keep the memory state under the given upper bound, we need to update the

average R-D characteristics with each incoming image as

(P+k—1)x R(Di, k — 1)+ r(D)

(3.3)

where R(D;, k) is the average R-D characteristics for the k™ image, D; is the
i'" distortion in a certain resolution, P is the weighting for the training result.
If P is too small then the average R-D characteristics changes very fast and,
as a result, the distortion of the image set can suffer substantial fluctuation.
Conversely, P is too large then the result is same as that of the rate control
based on a predetermined and fixed R-D model for all future frames. This is
illustrated by Fig. 3.3, where two extreme cases of selection of P are shown. In
P = 0 case, the PSNR fluctuates significantly but the memory state remains well
below the upper bound converely, in P = oo, the PSNR is flat but the memory
state reaches the upper bound twice.

Although the probability of reaching the upper bound is reduced by the above
updating method for the average R-D characteristics, still, there are cases where
the upper bound is reached. In those cases, we should restrict the rate of the

current image in order to save enough memory for future images.

Algorithm 1: Online rate control for an image set.

93



image No.

2.5

memory used (Byte)
P M

et | LA P=D |
0.5 mmenees N A drrrmooeeans drommmaeees ——  upper bound |4
{ : H H . H

ﬁe‘f
0 i ; i i ; i
1] 5 10 14 20 5 30

image Mo,

(b)

Figure 3.3: P = oo indicates on-line rate control with fixed average R-D charac-
teristics and P = 0 indicates on-line rate control without average R-D characteris-
tics given by pre-training (i.e., the average R-D characteristics is only determined
by previously saved images and the current image). This image set is the same
as the image set 2 in Fig. 3.5.
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[Step 0]: Find average rate distortion characteristics (R(D) ), using the training
set of images.

[Step 1]: Update the average rate distortion with the rate distortion of current
image using (3.3).

[Step 2]: For the k' image, find the quantization value q, using (3.2). If the

solution violates the boundary condition then, find qp using,

. N —kx R(d i)+ Qi
gr = arg ming,, < N (_ E{qi)i () - anzn)

subject to

N —k x R(d(qri)) + (qri) h
( N—k+1 ) = fonin

[Step 3]: If the current image is the final image then end, else k = k+ 1, goto

Step 1.

More generally, we assume that we have not only R-D information for the current
image but also R-D information for the next T' future images (i.e., we can store
T + 1 images before compression.) Under this assumption, the 7" known future
images can be used for updating the average R-D characteristics and for select-
ing the optimal bit allocation for the current image. In this T-step delay rate

control algorithm, the initial average R-D characteristics is obtained from the
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training sets and the first 7" images in the image sequence and then it is updated
by incorporating newly updated images. Therefore, if T = N and P = 0 (as
an extreme case), then we can use off-line MMAX optimal R-D characteristics
of the image set for the whole images. The new advantages of the T-step delay
algorithm are that (i) the effect of the known future images is taken into account
to make decisions on the current image and (ii) the upper bound can be ignored
if the memory state is below the upper boundary after 1" images. The memory
state of a future image can reach the upper bound when the online rate control
is used. However, by using the T-step algorithm, the memory state of the known
future images can be kept below the upper bound by reducing the rate of the
current image. For example, in the online rate control case, if the optimal solu-
tion of the current image violates the upper bound constraint then the solution
should be changed for the future images. But in T-step delay rate control case,
if the optimal solution of the current image and T known future images satisfies
the boundary constraint then the optimal solution is selected as the solution of
the current image, even if this solution violates the constraint after storing the
current image. Therefore, using this second advantage, checking that the upper
bound is not violated only needs to be done with the result after T-steps (and
not with the result at every step) in the Algorithm 2 Step 3.

The main difference between the online and T-step delay rate control algo-

rithms is that the T-step delay rate control uses (i) in Step 1, the average R-D
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characteristics is updated with 7'+ 1 images before compressing the first image
and then with each new image and (ii) in Step 3, the R-D characteristics of T-step

ahead images are used to determine the solution of the current image.

Algorithm 2: T-step delay rate control for an image set.

[Step 0]: Find the average rate distortion (R(D)), using the training sets of im-
ages.

[Step 1]: Iterate (3.3) T times with increase of k and then reset k = 1.

[Step 2]: Update the average rate distortion with the rate distortion of the next
image captured, i.e., the T™ image captured after the current image.

P+k+T

R(D;, k) = T <N—k

where Ty 7(D;) is the rate of the (k + T)™ image at a distortion D;.
If T'> N — k, then skip Step 2.

[Step 3]: For the k' image, find the quantization value q as

gr = arg ming,, | r(qs) + > 7j(d(qrs)) + (N =T — k) x R(d(qyi)) — My |

j=1
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If the solution violates the boundary condition then find q. using,

gr = arg ming,,

((N =T — k) x Rd(g)) +r(aw) + S0 ri(a)) )
N—k+1 o

subject to

((N — T — k) x R(d(ay)) + r(as) + S0, rj(d(qm-))) o b
N . k’ + 1 — mn*

[Step 4]: If the current image is the final image then end, else k = k + 1. If

T >N —k then T=T-1. Goto Step 2.

3.3 Experimental results and discussion

In order to confirm the validity of the proposed online algorithm, we implement
this algorithm and test it with 285 images taken from MPEGT test images (H:
512, W: 768 or vice versa). In the implementation, we assume that the total
memory size available is 3 Mbytes and the pre-determined number of images is
30 (the total number of images in one image set), i.e., the average bit rate of each
image is 100 Kbytes. 70 image sets are randomly generated from the test images
for training the encoder to get the average R-D characteristics. In Table 3.1, the

results of the proposed online and 1-step delay methods are compared with other
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methods. The results are obtained by averaging those obtained with 30 image
sets randomly generated from the image set. Note that we used all test images
to generate both training sets and test sets, but under the assumption that the
images are randomly distributed, the main result of the training depends on the
order of the randomly selected images. Therefore our experiment is reasonable
because the training sets and the test sets are different and the test images are
randomly distributed. The variation in image charateristics is shown by the bit
rate change under given distortion in Figs. 3.4(c) and 3.5(c)). The results of the
proposed algorithms are better than the constant rate and constant quantization
algorithms in terms of average minimum PSNR and of average standard deviation
of PSNR. Because for high complexity images more bits are needed to decrease
the distortion than for low complexity images, the average PSNR of the off-line
MMAX optimal solution is worse than for the other methods. Here, for the
constant quantization and constant distortion methods, we select the quantizer
index and the distortion based on the training result. For better results, a larger
quantizer index (i.e, a smaller quantization step size) and smaller distortion can
be selected but this induces more frequent violations of the memory constraint.
The last column shows the number of saved images. This shows that the constant
quantization and constant distortion methods cannot guarantee storing the pre-

determined number of images in a fixed memory size.

99



The results for two specific image sets are given in Figs. 3.4 and 3.5. In
Figs. 3.4(c) and 3.5(c), we can see that the complexities of the image sources
are randomly distributed and the high complexity images need approximately 10
times higher bit rate than the low complexity images for a given distortion.

In Figs. 3.4 and 3.5, the results of the proposed online algorithm are compared
with several methods such as off-line MMAX optimization, constant rate, con-
stant quantization, and constant distortion using randomly selected image sets.
For the constant rate method, we select the quantization value which satisfies
the condition that the compressed image size is under 100 Kbytes, in order to
prevent violations of the total memory size. From Figs. 3.4(b) and 3.5(b), we
can see the PSNR curve of the constant quantization method that is used domi-
nantly in digital cameras produces fluctuations of more than 10dB. Although the
PSNR curve of constant distortion looks near optimal in Fig. 3.5(b), the used
memory is over 3 Mbytes (i.e., we can not save all the pre-determined number
of images.). Also, in Fig. 3.4(b), the PSNR curve is below the PSNR curve of
the online method due to over estimation. (We can see that more than 20% of
the memory remains unused in Fig. 3.4(f).) As we already mentioned, for the
set of images that contains many high complexity images, we cannot save the
pre-determined number of images using either the constant quantization or the

constant distortion method. Although the constant rate method can always save
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the pre-determined number of images, this method gives the worst result in terms
of providing a constant distortion.

From both figures, we can verify that the online algorithm gives better results
than the other three online methods without resulting in memory violations.
When the image set is not random (i.e., several high complexity images are
captured successively), this algorithm shows sub-optimal behavior by the “buffer-
like” constraint. But, with the help of this constraint, we can always store the
pre-fixed number of images with, at least, the minimum acceptable quality.

In Fig. 3.6, the results of the proposed online and 1-step delay methods are
compared with those obtained with the off-line MMAX optimal method using
two image sets. Fig. 3.6(a) shows that the result of the proposed online method
tends to have low PSNR due to the effect of the upper bound. Because this
image set has many high complexity images (the off-line optimal PSNR is under
37dB), the average R-D characteristics determined by the training sets clearly
underestimates the complexity of the images actually being coded. Due to this
mismatch, the memory state reaches the upper bound and tends to low PSNR
result. The 1-step delay method eliminates this problem by reducing the rate of
the previous image. Thus, the average result of the 1 step delay method is much

better than the online method (see Table 3.1).
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Table 3.1: Average performance (PSNR) comparison of proposed online algo-
rithm with off-line optimization, constant rate, and constant quantization using
30 image sets composed of randomly chosen 30 images. The last column indicates
total number of saved images out of 900 images.

Method Average Std. Dev. | Minimum | Maximum | Number of
saved images

Off-line Optimal 37.98 0.173 37.79 38.42 900

Constant Rate 38.01 4.22 28.56 45.80 900

Constant 38.17 2.250 34.17 44.78 879

Quantizer

Constant 37.82 0.139 37.48 38.12 872

Distortion

Proposed(Online) || 38.10 1.546 34.55 41.83 900

Proposed (1 step || 38.02 0.413 35.62 40.81 900

delay)

3.4 Conclusions

In this chapter, we investigated the optimal bit allocation problem in digital
cameras, i.e., the problem of determining the optimal bit rate for a current image
without having information about the future images, under the constraint of
storing a fixed number of images, within a fixed memory size. The characteristics
of future images are estimated from the training data and the images already
taken and the problem can be formulated as minimizing the maximum distortion
for a current image and the estimated future images. In order to keep enough
memory for the future images, we used a “buffer-like” constraint. We showed
that our result achieved a performance close to that obtained by applying an

off-line rate control.
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We also investigated the optimal bit allocation problem under the assump-
tion that T future images are available. With this limited number of known
future images, suboptimal behaviors arising in the no look-ahead problem can
be eliminated. We showed that even the 1-step delay rate control method had
much better results than the online method with no look-ahead while keeping the

memory state below the upper bound.
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Figure 3.4: Performance comparison of proposed online algorithm with other
methods such as off-line optimization, constant rate, constant quantization, and
constant distortion using image set 1 composed of randomly chosen 30 images:
(a), (b) PSNR of each image, (c), (d) bit rate of each image and (e), (f) memory
usage for this image set.
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Figure 3.5: Performance comparison of proposed online algorithm with other
methods such as off-line optimization, constant rate, constant quantization, and
constant distortion using image set 2 composed of randomly chosen 30 images:
(a), (b) PSNR of each image, (c), (d) bit rate of each image and (e), (f) memory
usage for this image set.
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Chapter 4

Optimal Rate Control for Video Transmission
over CBR/VBR Channels based on a Hybrid

MMAX/MMSE Criterion

In this chapter, we consider the problem of rate control for video transmission.
We focus on finding off-line optimal rate control for constant bit-rate (CBR), and
for variable bit-rate (VBR) transmission with a token bucket policing function.
To ensure a maximum minimum quality is obtained over all data units, we use
a minimization of maximum distortion (MMAX) criterion for this problem. We
show that, due to the buffer and channel constraints, a MMAX solution leads to a
relatively low average distortion, because the total rate budget is not completely
utilized. Therefore, after finding a MMAX solution, an additional minimization
of average distortion (MMAX+) criterion is proposed to increase overall quality

of the data sequence by using the remaining resources, i.e. those resources that

112



were not utilized by the MMAX solution. The proposed algorithms lead to an
increase in average quality with respect to the MMAX solution, while providing
a much more constant quality than MMSE solutions. Moreover, we show how

the MMAX+ approach can be implemented with low complexity.

4.1 Introduction

Future high bandwidth video applications, such as video-on-demand (VOD), will
require transmission over the network of video compressed at a variable rate.
Thus, a rate control has to be used, based on objectives such as coded video
quality or data rate. Also, video transmission needs to be performed under delay
constraints for real time playback, since video frames that arrive too late are
useless.

To transmit VBR encoded data, VBR transmission is preferable to CBR trans-
mission since VBR transmission needs lower end-to-end delay and a smaller buffer
size [53, b, 23]. However, due to the limited network resources, negotiation be-
tween each user and the network is indispensable in order to ensure QoS (quality
of service) guarantees, where the parameters specified to define QoS can be delay
jitter, bandwidth, end-to-end delay, and so on. In addition, policing mechanisms
are used to alert the network if there are users who violate the agreed upon

transmission parameters.
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VBR video transmission through ATM (Asynchronous Transfer Mode) net-
works with a leaky bucket policing function has been studied in the litera-
ture [53, 46, 5, 23]. In [53, 5, 23], VBR transmission under both encoding and
decoding buffer constraints and channel constraints is studied. In [46], multiple
leaky bucket policing is introduced to regulate peak rate. It may be desirable to
supplement a traffic policing function with a traffic shaping policy where traffic
shaping is used to smooth out a traffic low. One simple traffic shaping approach
is “token bucket” (TB) policing. At the encoder side, leaky buckets and token
buckets with the same parameters (i.e., the bucket size and the token rate) are
equivalent, in that they impose the same constraints on the encoder. However,
at the decoder side, the incoming data rate produced by each of these two ap-
proaches can be different.

Token buckets are also specified in next generation Internet Protocol (IP) net-
works. The Internet Engineering Task Force (IETF) has defined the Guaranteed
Service (GS) in order to provide QoS to real time applications and token bucket
policing is recommended as a traffic shaping method for GS [62].

After channel and source constraints, such as channel bandwidth, peak trans-
mission rate, limited delay, total bit-budget or the size of codec buffers, have been
determined, a target quality measure should be chosen. Most previous work for
image and video coding has been based on minimization of average distortion

(MMSE). As a consequence, optimal bit allocation under various constraints for
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the MMSE criterion has been widely studied in the literature. Examples include
bit allocation for arbitrary inputs and a discrete set of available quantizers [64],
for dependent quantization [51], bit allocation under buffer constraints [48] and
bit allocation for video transmission over ATM networks [5] [23]. A main draw-
back of the MMSE criterion is that the quality difference between frames can be
large and some frames may be coded at relatively low quality even though the
average quality over all frames is high. A minimization of maximum distortion
(MMAX) criterion has been proposed to prevent this heavy fluctuation of source
quality [58]. Solutions for the bit allocation problem under the MMAX criterion
for both independent [41] and dependent quantizers [60] have been studied. Using
this criterion, coding units having a significantly lower than average quality can
be avoided. However, when multiple constraints are present, as when buffering is
considered, the MMAX criterion by itself may be inefficient. This is because the
MMAX optimization is terminated as soon as it cannot decrease the maximum
overall distortion. For example, in the case of CBR transmission of a video se-
quence with buffer constraints, the maximum distortion frame could occur for a
frame that is located in a period of several consecutive high complexity frames.
Because these frames may require higher data rate than the given transmission
rate, the buffer will tend to fill up. If this is the case the algorithm will stop

because the distortion of the worst frame cannot be reduced without incurring
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in overflow. This means that additional rate could be used in other parts of the
sequence, so that overall quality could be increased.

A criterion for minimizing distortion in lexicographical sense (MLEX) has
been proposed as a modified MMAX approach to increase overall quality [20] [19].
In a MLEX criterion, two different solutions are compared by arranging each
solution as a sorted list of the achieved distortions in a non-increasing distortion
order. Then a comparison of the distortions is based on considering the two lists
starting from the 1% index. If the distortions in the first position are equal then
the 2 indices are compared. If the distortion of the two solutions is different for
a given index then the solution with smaller distortion in that index is the better
one. Otherwise the comparison is continued through the following position until
the distortion of two solutions are different. This criterion is used to find optimal
bit allocation under CBR constraints in [20] where quantizer levels are used as
a distortion measure. Since all frames have the same set of quantizer levels,
it is shown that the optimal solution is the one having constant quantization.
It is also shown that under buffering constraints the optimal solution consists of
segments with consecutive frames being allocated the same quantizer. In general,
if a distortion measure can take any arbitrary values, the proposed algorithm
cannot be easily applied. In our work, we show how the algorithm used to find
the MMAX solution with buffer constraints can be extended to find the MLEX

solution as well.
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As an alternative approach to increase overall quality after finding a MMAX
solution, we propose to use a MMSE criterion for the remaining bit-budget. We
denote this criterion MMAX+, because it adds additional targets to the MMAX
criterion. Note that in [58] a MMSE criterion is used to break the tie among
several MMAX solutions in a bit-budget constrained problem. However, in that
work there is no additional bit-budget to be reallocated.

Both MMAX+ and MLEX will increase the average quality with respect to
the MMAX solution (assuming an additional bit-budget is available.) However,
since MMAX+ explicitly targets average distortion it will lead to better average
MSE than MLEX.

In this chapter, extending our previous work in [36, 37|, we propose an offline
optimal rate control algorithm in MMAX and MMAX+ criteria for video trans-
mission over CBR and VBR channel with a discrete set of quantizers available
to code each frame. We introduce MMAX and MMAX+ criteria in these buffer-
constrained (for CBR transmission) and channel-constrained (for VBR transmis-
sion) problems, so that the best minimum quality of all frames is provided by
the MMAX criterion and good overall quality is achieved by the MMAX+ cri-
terion. We also propose an algorithm to reduce the complexity of finding the
MMAX+ solution. Simulation results show that the solution of our proposed
method gives almost the same average quality as the MMSE solution and much

better minimum quality, with lower complexity.
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This chapter is organized as follows: in Section 2, algorithms to find the opti-
mal solution for CBR transmission are proposed. In Section 3, algorithms to find
the optimal solution for VBR transmission with a token bucket policing function
are proposed. Experimental results are provided in Section 4. Conclusions are

provided in Section 5.

4.2 Rate Control for video transmission over

CBR Channels

4.2.1 Optimal rate control for a MMAX criterion

Video transmission is constrained by the maximum delay allowable, the encoder
and decoder buffers and channel constraints such as channel rate and channel
policing functions. In the CBR transmission case, it is possible to prevent the de-
coder buffer from underflowing (or overflowing) by preventing the encoder buffer
from underflowing (or overflowing) [53]. Therefore, the constraints of this prob-
lem are the transmission rate (C') and the encoder buffer size (B) since the delay
is determined by C' and B in a CBR case. We assume that one frame is coded ev-

ery T seconds and immediately moved to the encoder buffer after encoding. Then
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the problem we are trying to solve using a MMAX criterion can be formulated
as

min(max(D;)) s.t. B; < B for all i, (4.1)

q;

where D; is the distortion of the i** frame (1 <i< 8,8 isthe number of frames),
B; is the buffer occupancy after the encoded " frame is moved to the buffer (i.e.,
B; = max (Bj_, + R; — C - T, 0), where R; is the bit-budget of the i"* frame.)
For a given frame i, the (R;(¢;), D;i(g;)) pairs are determined by the selection of
a quantization level j (1 < j < @;). The algorithm to find the optimal MMAX

solution can then be defined as follows:

Algorithm 1: Optimal bit allocation in a CBR channel with buffer constraints
under a MMAX criterion

[Step 0]: Initialize the buffer occupancy by quantizing all frames with the coars-
est quantization available to each frame.

[Step 1]:Find the frame that has mazximum distortion and decrease the quanti-
zation step size of that frame.

[Step 2]:If the buffer is not in overflow then go to Step 1, otherwise STOP. The
frame that has mazimum distortion is the frame whose quantization changed just
before buffer overflow. Obviously, the maximum distortion is the distortion of

that frame without the final quantization change.
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The bisection algorithm [58] can be also applied to this problem. Note, how-
ever, that this algorithm may not be terminated since it is based on the bisection
of distortions, and distortions can take arbitrary positive real values. This al-
gorithm can be modified by pre-sorting all possible R-D data of all frames by
a non-increasing distortion order. After sorting the data, a bisection method is
applied to the sorted indices in order to find the optimal solution. This modified

algorithm can be described as follows:

Algorithm 2: Optimal bit-allocation in a CBR channel with buffer constraints
under a MMAX criterion: Pre-sorting and Bisection

[Step 0]: Sort all R-D data of all frames in a non-increasing distortion order,
where the data in the sorted array are rates, distortions, quantization and frame
numbers. Initialize buffer occupancy by quantizing all frames with the coarsest
quantization available to each frame. Set this choice as a solution. Set the largest
index of chosen quantization of all frames in the sorted array as Min. Set Mid
to [(Min + Mazx)/2], where Max is the mazimum index of the array.

[Step 1]:For each frame, choose the quantizer that has the lowest distortion
among all the quantizers for that frame having an index lower than or equal to
Mid.

[Step 2]:If the buffer is not in overflow then update the solution and let Min =
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Mid and Mid = [(Mid + Mazx)/2] else let Max = Mid and Mid = [(Min +

Mid)/2]. If Mid is not changed then STOP, otherwise go to Step 1.

Under the assumption that rate and distortion of all quantization levels are
pre-calculated, in Algorithm 1 Step 0 needs S selections, Step 1 needs log S
comparisons to find the frame that has maximum distortion and S comparisons
are needed to check buffer overflow in Step 2. Since the number of iterations
is at most SQ where @) is the maximum of ();, the complexity of Algorithm 1
is O(S?Q). But since the algorithm is terminated when it cannot improve the
maximum distortion, in general, the complexity is much lower than this bound.

In Algorithm 2, the complexity of merge-sorting is SQ log S since the data of
each frame are already sorted (see Fig. 1.7). In Step 1, complexity of the entire
iteration is at most S(@ since in each iteration already checked data do not need
to be checked again. The number of iterations is at most log SQ) and Step 2
needs O(S) comparisons in each iteration, so that total complexity of Step 2 is
O(Slog SQ). Therefore the complexity of Algorithm 2 is O(SQ log S) whereas
the complexity of the MMSE algorithm of this problem is O(BSQ) [48]. Since in
a video application, B is relatively large, the complexity of the MMAX algorithm

can be much lower than that of the MMSE algorithm.
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The optimal MMAX solution may result in buffer underflow, especially in the
case when several easily compressed frames are coded successively. Because un-
derflow occurs at the encoder, we can use stuffing bits to prevent any problem. In
this chapter, we propose to use this “spare” bit-budget due to underflow in order
to decrease the mean square error (MSE). We term this the MMAX+ approach as
the MMAX solution is improved upon with an additional MSE criterion. MSE’s
limitations are well known but, obviously, our MMAX+ technique could also be

used with alternative additive distortion metrics.

4.2.2 Optimal rate control for a MMAX+ criterion

After finding the MMAX solution, the problem we are trying to solve using a

MMAX+ criterion can be formulated as

s
min(z D;) s.t. BM < B; < B for all i, (4.2)

T

where BM is the buffer state at the i frame time when the MMAX solution
is used. Note that we take the MMAX solution as the initial condition and we
never reduce the bit allocation to a frame chosen by the MMAX approach, i.e.,
the additional step we propose can only increase the number of bits used for each

frame.
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Iunderflow

(c) (d)
Figure 4.1: Examples of computation of the effective buffer size (EBS) of different
frames. The solid line represents the buffer occupancy of a MMAX solution. The
height of the gray box is the EBS of the given frame and dashed lines show
that the determined EBS does not induce buffer overflow. The EBS of frame
“a” is determined by the residual buffer of the frame and that of frame “b” is
determined by the residual buffer of a following frame. For frames “a” and “b”,
the EBS is determined by the minimum residual buffer size of the current and
following frames. The EBS of frame “c” is determined by the sum of the amount
of underflow and the EBS of a frame after underflow. The EBS of frame “d” is

determined by the residual buffer size of the frame because it is smaller than the
EBS of the following frame.

It is important to note that the upper bound constraint in (4.2) is not tight.
This is because the trace BM already incorporates the effect of transmitted bits.
Thus any increase to B; over BM leads (if there was no buffer underflow) to an
increase in By for i’ > i, so that the overflow constraint could be violated for 7',
even if it is not for ¢ (see Fig. 4.1 (b)). To reduce the upper bound of the buffer
state of a frame, we introduce the concept of effective buffer size (EBS), where
the EBS of a frame is the maximum bit-budget that can be used to increase the

quality of the frame and such that no overflow occurs. Obviously EBS; (the EBS
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of the i frame) is smaller than or equal to the residual buffer size after selecting
a quantizer according to the MMAX solution of the frame (RBS;), the difference
between the maximum buffer size and the buffer state of the MMAX solution
(i.e., RBS; = B — BM), which varies from frame to frame. RBS; can also be
explained as the maximum amount of bits we can use for the i frame without
leading to an end-to-end delay violation. Examples of computation of the EBS
are shown in Fig. 4.1. In the figure, the EBS of frame “b” is determined by the
minimum RBS of all frames from “b” onwards. This is because additional bits
used at “b” will increase the buffer occupancy of all following frames (dashed lines
in Fig. 4.1 (b)). However, if the buffer is in underflow at the i"* frame interval
(where the " frame interval means the interval between the i frame and the
next frame) then the amount of underflow (UF;, where U F; = max(C-T — B;,0))
can also be added to the bit-budget of the i** frame without affecting the buffer
state of future frames (see Fig. 4.1 (¢)). In this example, given that EBS;,; is
known, FBS; is obtained as EBS; = min(RBS;, UF; + EBS;;1). The EBS for a

frame can be formed based on the following theorem.
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Theorem 1: The EBS for a frame can be formed as

RBSs .4 is the last frame,
EBS; = (4.3)

min(RBS;,UF; + EBS;1) : otherwise.

Proof) At first, we consider the last frame. Since the buffer state is causal,
increasing the rate for a frame only affects the buffer state of the current and
future frames. Since no future frame exists, the EBS of the current frame is
restricted by the buffer overflow of the current frame and it is determined by the
RBS of the current frame (i.e., EBSs = RBSs.) Next, we use induction to prove
the result. Since increasing the rate for a frame does not affect the buffer state
of the previous frames, the solution is to choose the maximum bit-budget that
does not result in buffer overflow at the current and future frames. For any i
(1 <i<S—1), assume EBS;y; is known. Then EBS; ; guarantees no buffer
overflow in all future frames. If the buffer is in underflow at the i** frame interval
then the rate can be increased by the amount of underflow without changing the
buffer state of the future frames. So in order to consider the overflow of future

frames only, the solution is the sum of the amount of underflow at the i'* frame
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interval (UF;) and EBS;, 1. Since the rate can be increased at most the remain-

ing buffer size of the i’ frame (RBS;), EBS; is determined by (4.3) m

Therefore, the EBS is computed from the last frame by using the equation
(4.3). After computing the EBS for all frames, the optimization problem following

the MMAX+ criterion is redefined as

S
min( »_D;)st. BY < B < EBS; + B} for all i. (4.4)

e i=1

This new formulation now guarantees that increasing B; does not lead to overflow.
The allowable quantization levels of the i*" frame (g;) are also reduced to (¢ <
¢ < Q}), where ¢M and @/, are determined by the MMAX solution and the upper
bound of B;, respectively.

This rate control problem can be solved by using a dynamic programming
method [48] or a Lagrangian optimization method [45, 5]. Given the buffer con-
straints due to our goal to preserve the MMAX solution, the number of states
in a dynamic programming method can be reduced significantly by computing
the EBS. As mentioned in the previous section, the complexity of the MMSE
algorithm is proportional to B and (). Since the EBS and the number of allow-
able quantization levels are much smaller than B and (), the complexity of the

MMAX+ algorithm is much lower than that of the MMSE algorithm.
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Encoder Buffer

Figure 4.2: System model of TB policing. C is the token rate and C; is the
transmission rate of the it" frame interval. T B,,.. and P indicate the size of a

token bucket and the peak rate respectively. In this policing, one byte data can
be transmitted per token.

4.3 Rate Control for video transmission over

VBR Channels

4.3.1 Optimal rate control in a MMAX criterion

In a VBR transmission case, preventing encoder buffer overflow does not guaran-
tee that a decoder buffer is not in overflow or underflow. Therefore, the decoder
buffer state has to be considered as a constraint in a rate control scheme for VBR
transmission [5] [23]. Here, to maximize channel utilization, we assume that
transmission is constrained by the maximum delay, rather than by the size of en-
coder and decoder buffers. In other words, the size of encoder and decoder buffers
is assumed to be large enough to always store all the data that it will be possible
to transmit under the given delay constraint (for the given channel constraints).
Thus, our goal is finding the optimal rate control for the MMAX and MMAX+

criteria under the given maximum delay and network policing constraints.
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In this chapter, TB policing is used as a policing constraint. TB policing
is defined with 5 parameters named transmission specification (Tspec) in [62],
[63]. In the specification, the amount of data sent is constrained not only by
the available tokens but also by the peak rate. This peak rate constraint is used
to put a limit on the size of data bursts. Therefore, as shown in Fig. 4.2, the
constraints of our problem are token bucket parameters (the token rate (C') and
the size of token bucket (T Bpaz)), the peak rate (P, P > C) and the maximum
delay (M), where the peak rate and the token rate are measured in bytes per
frame interval and the maximum delay is measured in frame intervals. Then the
problem we are trying to solve using a MMAX criterion can be formulated as

follows:

min,, (max(D;)) (4.5)

st. By <min(TB; +M-C, M- P), (4.6)
where T'B; = min(T Be, TBi—1 + C — C;_1), (4.7)
Bi=Bi1+Ri— Ci1, (4.8)

with Cj_; = min(B;_;, TBi_, +C, P). (4.9)

In the above equations, B; indicates the buffer occupancy after the encoded "
frame (1 < ¢ < S, S is the number of frames) is moved to the buffer, T'B; indicates
the TB state just before starting the i** frame interval (the interval between the
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i'" frame and the next frame) transmission, and M indicates maximum delay
in frame units. Initial transmission rate (Cp) is zero and initial encoder buffer
and TB state can be any values between zero and their maximum value. The
number of tokens in a TB (T'B;) and the number of bits in an encoder buffer (B;)
cannot be negative; this is guaranteed by (4.9). Among many possible channel
rate selection policies, in (4.9), we select the maximum available transmission
rate at each frame interval. This selection guarantees a performance as good
as the best, since it tends to minimize the token overflow probability (because
it uses a transmission rate that is as high as possible.) Instead of using the
transmission rate in (4.9), if we select a reduced transmission rate for certain
frame intervals then both the token count in the TB and the number of bits in
the encoder buffer increase. Since these bits are generated by the optimal solution
they should be sent, otherwise, the optimal solution cannot be achieved. Thus,
the extra tokens in TB will be still needed later on to transmit the additional
bits in the buffer. Therefore, by using different transmission policies, we cannot
get any extra channel capacity but will have higher probability of TB overflow
and delay violation. Note, however, that the optimal solution is guaranteed by
the selection in (4.9) only in the case that there are no additional constraints,
such as the size of an encoder or decoder buffer, or maintaining a near constant

transmission rate [11].
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Also, in order to prevent decoder buffer underflow, B; should be lower than
or equal to ;’;1;4—1 Cy [23]. The following Lemma shows that the channel rate

selection policy used never produce decoder buffer underflow.

Lemma 1: For any {R; s.t. B; < min(TB;+ M -C,M - P), 1 <i < S} the
channel rate selection policy in (4.9) never results in decoder buffer underflow.
Proof) As mentioned above, in order to guarantee no decoder buffer underflow,

B; should satisfy the following condition.
Bi< Y Ci. (4.10)

Based on (4.9), C; can be one out of three possible choices, so the number of
outcomes of the right side in (4.10) is 3" and we need to show that each of
these outcomes can satisfy the above condition or that, otherwise, it cannot be a
possible outcome.

i) Let us assume that C; is B;, and for all m such that i < m < j, Cy, is
TB,, + C or P, where j can be i < j < i+ M — 1. Then from (4.8), C; can be
written as

C, =B;j=B;1+R;,—Cj_,
J J J j J (4.11)

= B; + Z{:H—l R, — Z{:_il Cr,
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and the sum of channel rates can be

2134_1 Cr = Zj_li Cm + (Bi + Z{:i—i—l Ry — g:_il Cl) + Z?Zﬁf Cl

m=

(4.12)
=B + Z{:H—l Ry + Zﬁiﬁf Ci =z B;
Therefore, at any time j, if the channel rate is chosen as the first term of (4.9)
(i.e., B;) then the condition is always satisfied regardless of the channel rate at
time [, j <l <i+ M — 1. This can be explained because this choice, C; = B;;,
results in all the data in the buffer being fully transmitted.

ii) Let us assume that the channel rate chosen will always be the second or
third choice in (4.9), i.e., there is no j such that C; = B;. Also we assume that
for some j C; = TB; + C , and for all m such that i < m < j, Cy, = P, where
g can be i < j <4+ M — 1. This means that all the tokens in TB are used at
the j frame time interval. Therefore Cj,; is C' (since TB;;1 = 0) or P. Since
P is larger than or equal to C, Cj; should be C. Similarly C; for all [ such that
j+1<1<i+ M—1has to be C. Therefore once the second term is chosen
then all channel rates after this are fixed as C'. In other words, among all 3M
combinations, those combinations choosing the third term after the second term
is chosen are not possible.

By using (4.7), C; can be rewritten as

Cj = TBJ + é = min(TBmax, TBj_l + é - Cj—l) + é . (413)
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Based on our assumptions, C;_; = P, and therefore C; = TB;_, +2C — P (since
P is larger than or equal to C' and T'B;_; is at most T By,,.) By continuously

substituting the TB state, C; can be found to be :

C;=TBi+(j—i+1)-C—(j—1i)-P (4.14)

and the sum of the channel rates is

M, = =) P+{TBi+(j—i+1)-C—(j—i)-Py+(i+M—-1-7)-C

—TB,+M-C> B,
(4.15)

with the last inequality being a consequence of (4.6).

iii) The only possible outcome that we have not considered so far is that where
all the channel rates are P. In this case, the sum of the channel rates is M - P
and the condition is satisfied given (4.6).

From (i), (ii) and (iii), we proved that any possible combination of the channel
rate never induce the decoder buffer underflow, where the channel rate allocation
of (4.9) is used. Therefore we concentrate on the delay constraints and assume

that the channel rate is chosen following (4.9) m

Asin (4.6), the encoder buffer state is constrained by the maximum amount of

data that can be sent during the next M frame intervals. Therefore the minimum
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size of the encoder buffer (B) that will prevent additional buffer constraints from
arising is

B =min(TBpas + M -C, M - P). (4.16)

In other words if the physical buffer size is greater than B in (4.16) then we
need not consider the additional buffer constraint (but still consider the delay
constraint as in (4.6)). The algorithm to find the optimal MMAX solution can

then be defined as follows:

Algorithm 3: Optimal bit allocation in a VBR channel with channel constraints
under a MMAX criterion

[Step 0]: Initialize the buffer occupancy (B;) by quantizing all frames with the
coarsest quantization available to each frame.

[Step 1]: Find the frame that has maximum distortion and decrease the quanti-
zation step size of that frame.

[Step 2]: If the buffer state satisfies the condition in (4.6) for all i then go to
Step 1, otherwise STOP. The frame that has mazimum distortion is the frame

whose quantization changed just before STOP.

Fig. 4.3 shows two simple examples of VBR transmission with TB policing in

a MMAX criterion. As shown in (a), even though more data are stored in the
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Figure 4.3: VBR transmission with TB policing with parameters (C, T Bz,
P) under a MMAX criterion. Horizontal axes indicate time in frame units and
vertical axes indicate the size of transmitted data. Horizontal dashed lines in-
dicate the solutions in a MMAX criterion and the slopes of thick lines indicate
transmission rate of each frame interval. (a) is the case that the peak rate is high
enough not to be a constraint (i.e., P > T' B, + C) and (b) is the case that the
peak rate is used as a constraint.

buffer, the amount of data transmitted is always lower than the middle diagonal
lines in Fig. 4.3 since the available maximum rate in a frame interval is determined
by the remaining tokens in the TB and the new incoming tokens in the frame
interval (i.e., TB; + C.) In (b), the constant slope between the 2"¢ frame and
the 6" frame indicates the peak rate. As shown in the figure, the amount of
transmitted data is limited even though more tokens are available.

The MMAX solution may result in TB overflow, especially when easily com-
pressed frames are coded successively. Note that tokens that are dropped due to

TB overflow cannot be used for future data transmission. Similar to the CBR
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transmission in which the bit-budget due to underflow is used to decrease MSE,
we use these “spare” tokens, which are not used due to token bucket overflow, in

order to decrease MSE.

4.3.2 Optimal rate control in a MMAX+ criterion

Similar to the CBR case, after finding the MMAX solution, the problem can be

formulated as
n}lin(i D;) st. BY < B; < BY for all 4, (4.17)
b=t
where BM is the buffer state of the MMAX solution at the i* frame time of
the MMAX solution and BY represents the right side of (4.6). Fig. 4.3 shows
examples of BY. In the figure, “A” and “B” indicate BY and B} respectively
(in (b), “A” and “B” are same).

Note that although BY in (4.17) is lower than or equal to B, this does not
mean we can allocate additional BY — BM bytes. For instance, if we take BY
as B; then after transmitting data during the i** frame interval (i.e., subtracting
C;) and storing the (i + 1)™ frame data (i.e., adding RM,), B;;1 may be larger
than B, and the delay constraint will be violated. This is because the trace
BM already incorporates the effect of transmitted data, and thus additional data

allocated by the encoder does not result in additional channel rate (i.e., in order

to increase the rate we need to exploit instances of token buffer overflow when
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available transmission capacity was wasted.) Thus any increase to B; over BM
leads to decreasing tokens in the TB or increasing data in the encoder buffer for
all ' > i, so that delay violation could occur for 7, even if it does not occur for i.

To reduce the upper bound of the buffer state of a frame, we introduce the EBS
similar to the CBR case, where the EBS of a frame is the maximum additional
rate that can be used to increase the quality of the frame and such that no
violation of the condition in (4.6) occurs. In the VBR case, finding the EBS is
more complicated since we need to consider the TB and encoder buffer states
together instead of considering the encoder buffer state only as in the CBR case.
In addition, the peak rate constraint needs to be considered.

We introduce a method named assigning latest coming tokens first (ALTF),
in which to find EBS; (the EBS of the i'* frame), R;” for all j > ¢ is transmitted
by using the latest coming tokens first and R} for all £ < 4 is transmitted by
using the channel rate selection policy in (4.9). The main idea of the ALTF is
saving as many tokens as possible that can be used for transmitting the data of
the given frame data. Note that only the tokens in TB at the i* frame time
and the tokens coming between the i** and (i + M) frame time can be used for
transmitting the i** frame data. Fig. 4.4 shows an example of finding EB.S;
by using ALTF. In the figure, the top and middle figures show the TB state and
the arrival time of tokens, respectively, after applying the MMAX solution with

the channel rate selection policy in (4.9). After the (i + 1) frame interval, TB
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Figure 4.4: The top figure shows the TB state of the i'® and (i + 1) frame
intervals. The middle and bottom figures show the arrival time of the tokens
which are used to transmit i'® and (i + 1)"* frame data with the channel rate
selection police in (4.9) and the ALTF method to find EBS;, respectively. The
vertical axis indicates the tokens coming in each frame interval and the tokens

at the lower part of a frame interval arrive earlier than the tokens at the upper
part of the frame interval.

(corresponding to the height of the black area) is in overflow and some tokens
cannot be used for transmitting the data coming after overflow. After applying
ALTF to find EBS;, as in the bottom figure in Fig. 4.4, we can find the amount
of extra tokens (ET;) that we can use for transmitting additional i* frame data
without leading to any violation of transmission constraints for data coming after
it" frame. As shown in the figure, the tokens arriving late are used first in order

to transmit the (i + 1) and following frame data.
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But in order to calculate ET;, we need to know the arrival time of the last
token used for transmitting RM and that of the first token used for transmitting
RM, after applying ALTF, since ET; can be determined as the number of tokens
arriving between the two tokens.

The arrival time of the last token used for transmitting RM can be deter-
mined by using TBM and BM. Since TBM and BM are not related to the data
coming after the i'® frame, after applying ALTF to find the EBS of the i'* frame,
TBM and BM are not changed. Note that ALTF for the i* frame changes the

th and the following frames only. The frame

transmission policy for the (i + 1)
interval in which the token arrives (FIF) and the location of the token in the

interval (AF) can be determined as

. BM_TpBM
FIF =i+ =%,
(4.18)

AF = (B =TB")%C,
where a % operator indicates the remainder after division. The equation shows
that if the amount of data in the buffer is larger than the number of tokens in
the TB then the tokens coming after the i*® frame time should be assigned for
the data in the buffer. Therefore in this case, FIF should be larger than or equal
to i. In Fig. 4.5, FIF is i — 1 and this means, at the " frame time, the number

of tokens in TB is larger than the number of data in the buffer.
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Figure 4.5: Tllustrations of AF, FIF, AF FIF and ET;. In (b), tokens corre-
sponding to the black area cannot be used for transmitting the i** frame data
due to the delay constraint.

Next, in order to find the arrival time of the first token used for transmitting
RM,, we need to assign tokens to R;.V[ for all 7 > ¢ starting from the last frame
data (R%'). We define the frame interval in which the first token for R}, arrives
as FIF and the location of the token in the interval as AF. The FI and AF

are determined from FI[ | and Af | by assigning tokens to RM, as follows.

FIF = FIf, + [2mfi)

?

) (4.19)
AzF = (Aiq - R%rl)%c

For example, in Fig. 4.5 (a), FIf, and FI[ are i + 2. In (4.19), since A, is

always smaller than C, the difference between AL, and R}, is smaller than C
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and FI}" cannot be larger than FI/ ;. This is obvious because we first assign
tokens coming later. But we cannot use the tokens coming after the limited delay
(M), in other words, some tokens cannot be used for transmitting the i*" frame
data if FI[ is larger than or equal to i + M. Therefore in this case, we change
FII and Al to i+ M and 0 respectively. In Fig. 4.5 (b), the tokens corresponding
to the black area cannot be used due to the delay constraint and Af is changed
to 0.

Since FI' and AF are calculated recursively, we need to know the initial
values (i.e., FI§ and AL). These values depends on the final encoder buffer (B;)
and TB states (T'By) at the (S + 1) frame time, which are given as constraints.
If T'By is identical to By (i.e., the amount of tokens in TB is exactly same as that
of data in the buffer) then remaining tokens are fully used for transmitting the
remaining data. This means that tokens do not need to be stored in the TB for
transmitting the future data. But if T'B; is larger than By then this constraint
means that the number of tokens corresponding to the difference between 1By
and By should be stored for future use. In this case, we can consider that the same
number of tokens are used for transmitting the (S + 1) frame data (although it
does not exist). As an opposite case, if By is larger than 7'B; then we can consider

that the amount of future tokens corresponding to the difference between By and
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T B; are available after assigning tokens to the (S + 1) frame data. Therefore

similar to finding FIF and AL, FIL and AL are determined as

FIE =S+1+ 2Py

AE = (By - TB)%C .

Again, if FI{ > S+ M then

FIF =5+ M,

AE=0.

After finding the arrival time of the two tokens, ET; is determined as

ET,= (FI] = FIF')-C+ AT = A} .

(4.20)

(4.21)

(4.22)

EBS; is constrained not only by the maximum number of available tokens that

does not induce any violation (i.e., ET;) but also by the maximum available chan-

nel bandwidth, which is limited by the peak rate. Therefore EBS; is determined

as

EBS; = min(ET;, M - P — BM) .

(4.23)

141



After computing the EBS for all frames, the problem in a MMAX+ criterion

is redefined as

S
min() _D;) st. BM < B; < EBS; + B} for all i, (4.24)

a
=1

This new formulation now guarantees that increasing B; does not lead to TB
underflow and any violation of the condition in (4.6).

Similar to the encoder buffer state, we can find the lower and upper bounds of
the TB state. As we mentioned, we cannot, save more tokens than T'BM without
increasing data in the encoder buffer (i.e., without changing the channel rate
selection policy for the i'® and previous frames.) Therefore TBM is the upper
bound of T'B;. The lower bound of the TB state can be determined by using
FIT and AF. Since T'B; indicates the number of tokens in TB before starting
the i frame interval, T'B; should be large enough not to result in constraints
violations when make transmitting the MMAX solution of the i"* and following
frames. If FI", is larger than or equal to i then the data of current and future
frames can be sent without using the tokens coming before the i** frame time
(note that FI! | relates to the tokens used for the " and following frames.) In
other words, TB; can be zero in case that the buffer is empty before adding "
frame data. But if F'II; < i then some tokens should be stored in TB for future

use, otherwise the MMAX solution cannot be preserved. The minimum use of
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tokens in TB for the i* and following frames is determined by using FI!", and
AL, since we first assign tokens arriving later from the last frame in order to
find FI™ and AF. Therefore the lower bound of the TB state (T'B*) can be

determined as

TBF = (4.25)

K3

0 , otherwise,

where T B is the T B® of the i’ frame time. As a result, the TB state of the it

frame time is bounded as

TBf <TB; <TBM | for all i. (4.26)

Similar to the CBR transmission, the optimal rate control problem under
the MMAX+ criterion can be solved by using a dynamic programming (DP)
method [23] or a Lagrangian optimization method [5]. Obviously other techniques
are possible to find faster approximate solutions but we provide a result with an
optimized DP method to provide a fair comparison between MMAX+ and MMSE
solutions. In the DP method which we use in this chapter, given the buffer and
channel constraints due to our goal to preserve the MMAX solution, the number

of states can be reduced significantly by computing the upper bound of encoding
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buffer and TB states. The complexity of the MMSE algorithm is proportional
to the number of states (B and T'By,,,) and quantization levels (Q) [48]. Since
the EBS and the number of allowable quantization levels are much smaller than
B (and T'Bj,,) and @ respectively, the complexity to find the optimal solution

under a MMAX+ criterion is much lower than that under a MMSE criterion.

4.4 Experimental results and discussion

In order to verify the performance of the proposed algorithms, we implement
these algorithms and test them with 1800 frames from the “Fire Birds” movie
sequence. We use the Group of Pictures (GOPs) in MPEG as the basic data unit
and the “closed GOP” option in MPEG?2 is used to code each GOP independently.
To gather the R-D data of the GOPs, each GOP is coded by using 159 different
rates roughly between 125 Kbytes and 1705 Kbytes (the difference between steps
is roughly 10 Kbytes). The sequence contains 120 GOPs (each GOP has 15
frames) and each GOP is coded by using the MPEG2 TM5 [28] rate control.
Fig. 4.6 shows the optimal solution of MMAX, MMAX+ and MMSE criteria.
As shown in the figure (a), the PSNR of MMAX+- is always higher than or equal to
the PSNR of MMAX. Also the figure shows that the bit-rate fluctuation among
GOPs of the MMSE solution is similar to that of the MMAX and MMAX+

solutions whereas the PSNR fluctuation among GOPs are much larger.
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Figure 4.6: Comparison of experimental results of CBR transmission. Used chan-
nel rate is 10 Mbps (i.e., 625 Kbytes per a GOP interval) and the size of an encoder
buffer is 2.5 Mbytes. Therefore the maximum delay used is 4 GOP intervals. Ini-
tial and final buffer states are at mid-buffer. (a) and (b) show the PSNR and
bit-rate of each GOP respectively.
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Figure 4.7: Encoder buffer state of CBR transmission. The solid line indicates
the encoder buffer state of the MMAX solution and the vertical distance between
the dashed and solid lines indicate the effective buffer size (EBS) of each frame.

Fig. 4.7 shows the EBS of each GOP. Note that in the figure, the buffer state
of MMAX is always positive since it includes the new coming data (R) at each
GOP time. In Fig. 4.7, the EBS of the GOPs between 40 and 110 is zero and
this means we cannot increase the bit-rate of these GOPs (otherwise encoder
buffer overflow occurs after moving the 110" GOP data into the buffer.) This
also explains why the PSNR of the MMAX and MMAX+ solutions of the GOPs
between 40 and 110 is identical in Fig. 4.6 (a).

To compare the performance, we also developed an algorithm to find the op-

timal MLEX solution of the CBR transmission by changing Algorithm 1 slightly
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Table 4.1: Performance (PSNR) comparison of proposed MMAX and MMAX+,
MMSE and MLEX optimal solutions of CBR transmission. The constraints used
are the same as those in Fig. 4.5.

Method Avg. Std. Min. Max.
Dev.

MMAX 38.21 | 0.137 38.15 | 39.44

MMAX+ 38.60 | 0.847 38.15 | 42.57

MMSE 38.72 1.424 35.26 | 42.75

MLEX 38.56 | 0.494 38.15 | 39.44

(i.e., after finding a MMAX solution, instead of terminating the algorithm, keep-
ing the iteration to minimize the 2"¢ largest distortion and then to minimize the
following largest distortion until any distortion cannot be lowered.)

Table 4.1 shows the experimental results of CBR transmission for each cri-
terion. As expected, the minimum PSNR of the MMAX solution is higher than
that of the MMSE solution. The MMAX+ criterion improves the average PSNR
around 0.4 dB, achieving a value that is near the average PSNR of the MMSE
solution. The standard deviation of the MMAX solution shows that the PSNR of
each GOP is very similar but the maximum PSNR is relatively high. The reason
for this is that some GOPs have simple content and so the PSNR of these GOPs
at minimum rate (125 Kbytes) determines the maximum PSNR (see the PSNR
and bit-rate of the 9 frame in Fig. 4.6.)

In Table 4.2, the performance of each method is compared for different values

of the maximum delay, or equivalently, different sizes of the encoder buffer. The
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Table 4.2: Performance (PSNR) comparison of CBR transmission in different
maximum delay. The number in the “Method” column indicates maximum delay
in GOP interval units. Therefore the sizes of encoder buffers are 5 Mbytes and
1.25 Mbytes respectively. Initial and final buffer states are at mid-buffer (i.e., 2.5
Mbytes and 625 Kbytes respectively.)

Method Avg. Std. Min. Max.
Dev.
MMAX (8) 38.33 | 0.120 38.27 | 39.44
MMAX+ (8) 38.59 | 0.726 38.27 | 42.57
MMSE (8) 38.73 | 1.449 35.26 | 42.75
MLEX (8) 38.56 | 0.356 38.27 | 39.44
MMAX (2) 37.71 | 0.216 37.64 | 39.44
MMAX+ (2) 38.67 | 1.242 37.64 | 42.57
MMSE (2) 38.70 | 1.441 35.26 | 42.23
MLEX (2) 38.56 | 0.716 37.64 | 40.69

results show that minimum PSNR of the MMAX solution and average PSNR of
the MMSE solution are increased (decreased) and the difference of average PSNR,
between MMAX+ and MMSE solutions is increased (decreased) as the maximum
delay is increased (decreased). Because larger buffer size (with increased delay)
means that the problem is not as constrained, we can find a better solution
(better average PSNR) in a MMSE criterion. Also, if the encoder buffer size
is increased then local fluctuation of the bit-rate of GOPs can be absorbed and
buffer is not easily overflowed by consecutive complex GOPs. Therefore the
minimum PSNR of the MMAX solution is increased and the additional bit-budget
available due to the buffer underflow is decreased. Since the remaining bit-budget

for the MMAX+ (or MLEX) solution is decreased, the average PSNR cannot
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be improved much (and so the average distortion of the MMAX+ and MLEX
solutions is almost same when maximum delay is 8.) As a result, the performance
of a MMAX criterion is improved (i.e., more bit-budget is used for a MMAX
solution) as maximum delay is increased, and therefore the benefits of a MMAX+
criterion are not as significant in this case.

In the other case, if the encoder buffer size is reduced, it is more likely that
buffer overflow can occur (i.e., minimum PSNR in MMAX is decreased) and the
remaining bit-budget due to buffer underflow is increased (i.e., average PSNR in
MMAX-+ is increased and the difference of the average PSNR between MMAX+
and MLEX is increased.) Therefore, in this case, the benefits of the MMAX+
criterion are increased and the average PSNR approaches that of the MMSE
criterion.

Fig. 4.8 shows the optimal solution of VBR transmission. The result is similar
to that of CBR transmission (i.e., the PSNR of MMAX+ is always higher than
or equal to the PSNR of MMAX.) Fig. 4.9 (a) and (b) show the EBS and the
possible TB state of each frame, respectively. Compared to the EBS of CBR
transmission (shown in Fig. 4.7), the EBS of VBR transmission is larger due to
the channel flexibility. Note that, in Fig. 4.6 and 4.8, the total amount of the
available channel and the maximum delay are same.

Table 4.3 shows the experimental results of VBR transmission for each crite-

rion. The minimum PSNR of the MMAX solution in VBR transmission is higher
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Figure 4.8: Comparison of experimental results of VBR transmission. Used token
rate is 1.25M/sec (i.e., 625K per a GOP interval), the maximum delay is 4 GOP
intervals and the size of a TB is 2.5 Mbytes. Initial and final TB and buffer
states are at mid-buffer. (a) and (b) show the PSNR and bit-rate of each GOP

respectively.
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Figure 4.9: Encoder buffer state and TB state of VBR transmission. The solid
line indicates (a) the buffer state and (b) TB state of the MMAX solution. In
(a), the vertical distance between the dashed and solid lines indicate the EBS of
each frame. In (b), the dashed line indicates the lower bound of TB state of each
frame.
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Table 4.3: Performance (PSNR) comparison of the proposed MMAX and
MMAX+, and MMSE optimal solutions of VBR transmission. Used constraints
are the same as used in Fig. 4.8.

Method Avg. Std. Min. Max.
Dev.

MMAX 38.422 | 0.140 38.373 | 39.440

MMAX+ 38.583 | 0.489 38.373 | 40.800

MMSE 38.733 | 1.505 35.260 | 42.753

Table 4.4: Performance (PSNR) comparison of VBR transmission when the max-
imum delay, TB size and peak rate are changed with respect to the settings of
Table 4.3. In the “Method” column, M indicates that the maximum delay is half
that in Table 4.3, TB indicates TB size half that in Table 4.3, and P indicates
that the peak rate is 1.5 - C. In each case the remaining parameters are not
modified.

Method Avg. Std. Min. Max.
Dev.

MMAX (M) 38.312 | 0.158 38.260 | 39.440

MMAX+ (M) 38.593 | 0.804 38.260 | 42.567

MMSE (M) 38.732 | 1.502 35.260 | 42.567

MMAX (TB) | 38.280 | 0.163 | 38.227 | 39.440
MMAX+ (TB) || 38.590 | 0.831 | 38.227 | 42.567
MMSE (TB) || 38.730 | 1.492 | 35.260 | 42.753

MMAX (P) 38.200 | 0.175 | 38.153 | 39.440
MMAX+ (P) || 38.599 | 0.902 | 38.153 | 42.567
MMSE (P) 38.724 | 1.497 | 35.260 | 42.753
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than that in CBR transmission under the same maximum delay constraint since
tokens can be stored in the TB for future use (CBR transmission can be viewed as
VBR transmission with TB policing, where TB size is zero.) Although the com-
plexity to find the MMAX+ solution highly depends on the token bucket states
of the MMAX solution, in this experiment, the complexity of the MMAX+ algo-
rithm is roughly 20 times lower than that of the MMSE algorithm.

In Table 4.4, the performance of VBR transmission of each method under
lower maximum delay, smaller token bucket size, lower peak rate is compared.
Because these parameter changes give higher constraints to the problem, the
allowable encoder buffer size is reduced as in (4.6) and (4.7) and severe local
fluctuation of the bit-rate of GOPs cannot be absorbed. Therefore the minimum
PSNR of the MMAX solution is decreased and the additional bit-budget available
due to the TB overflow is increased. Since the bit-budget for the MMAX-+
solution is increased, the average PSNR can be improved and so the difference of

average PSNR between MMAX+ and MMSE solutions is decreased.

4.5 Conclusions

In this chapter, we developed the optimal bit allocation algorithms for CBR and
VBR transmission with a token bucket policing function in MMAX and MMAX+

criteria. The MMAX+ criterion is introduced to improve total quality by using
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the remaining channel bandwidth under the MMAX criterion. The proposed
algorithms lead to an increase in average quality with respect to the MMAX
solution, while providing a much more constant and better minimum quality
than MMSE solutions. Also algorithms for finding the effective buffer size are
proposed. The effective buffer size is used to reduce the number of possible states

of each frame and as a result, the complexity of the algorithm to find the optimal

MMAX+ solution is reduced.
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Chapter 5

Conclusions and Future work

In this thesis, several novel algorithms related to source coding are presented.

At first, a new compression algorithm of digital cameras is proposed, in which
the characteristics of a Bayer color CCD array is used to improve coding per-
formance. The simulation shows that the result of the proposed methods out-
performed that of the conventional method in a broad range of compression ra-
tios. Because the proposed algorithm uses only around a half size of Y data
and requires an additional simple transform, the computing complexity can be
decreased. Also, with this algorithm, reducing blocking artifact and fast consec-
utive capturing can be achieved.

Second, an on-line bit allocation algorithm with a bit-budget constraint is
developed. To achieve equal quality of all image frames, a minimizing maximum
distortion (MMAX) criterion is used. The future images are estimated from the

training data and the images already taken and a “buffer-like” constraint is used
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to keep enough memory for the future images. Simulation results show that the
performance of this algorithm is close to that obtained by applying an off-line
optimal rate control.

Third, an off-line optimal bit allocation algorithm with channel constraints
is developed. A MMAX criterion is used to guarantee a minimum quality is
achieved and after finding the optimal solution, a MMAX+ criterion is applied
to maximally use a given channel and to improve overall quality. CBR and VBR
with a token bucket policy are used as a channel and maximum delay is used as a
constraint. Also algorithms for finding the effective buffer size are proposed. The
effective buffer size is used to reduce the number of possible states of each frame
and as a result, the complexity of the algorithm to find the optimal MMAX+

solution is reduced.

5.1 Future work

e Source coding of captured image:
In Chapter 2, we have developed an algorithm to reduce redundancy before
compression. By doing this, the complexity of the coding is reduced and
also better quality decoded images can be optained under the given bit-
budget. The algorithm using “shift” has minimum complexity in terms

of the size of source data and the algorithm using “rotation” has near
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minimum complexity. Because, in general, image capturing is done with
hand-held devices or remote devices, this lower complexity algorithm can
provide faster consecutive capturing or low power consuming. The hidden

complexity is that this method needs higher decoder power.

Another problem is that trying to achieve better quality if additional com-
plexity is allowed in the encoder side. A high complexity interpolation
technique such as directional edge based interpolation [2] [39] [40] gives very
good quality reconstructed images but requires several seconds or even sev-
eral minutes, so it is impossible to use this algorithm in real applications.
But if we preserve captured data near lossless then any good interpolation
technique can be applied in a decoder side. Therefore the problem is how to
simply augment (or interpolate) the captured data to be highly compressed

by standard coders while providing near lossless quality.

On-line bit allocation with budget constraint:
The algorithm of on-line bit allocation with a budget constraint is proposed
in Chapter 3. a MMAX criterion is used to achieve near constant quality

for all images and the image sequence is considered as i.i.d.

This algorithm can be extended to a video sequence. For example, a similar
algorithm can be used by handling a GOP as an image in the proposed

algorithm. But consecutive GOPs in the same scene are highly correlated,
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so the estimation of future GOPs can be separated into the estimation of
GOPs in the same scene and of GOPs in other scenes. To do this, the
length of scene should be estimated for the GOPs in the current scene and
average bit-rate of future GOPs should be estimated for the GOPs in the
other scene. The result may be improved if bit-budget of scene change is

also estimated and applied.

Video transmission:
In Chapter 4, an off-line optimal bit allocation algorithm in MMAX and
MMAX-+ criteria is proposed for image or video transmission through CBR

and VBR with token bucket channels.

The next problem to be considered is how to achieve the off-line optimal so-
lution in a MMAX criterion by using an on-line method. Here, we consider
the coder that supports scalability property such as SPIHT and JPEG2000
and the encoder buffer that provides data sorting [10]. In this approach, as
much coded data as possible is stored and if there is not enough memory
to store all images then by using sorting, relatively less important data of
the stored images are discarded. Some parts of coded data can then be

removed due to scalability property.
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