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ABSTRACT

Wavelet-based image denoising algorithm depends upon the
energy compaction property of wavelet transforms. How-
ever, for many real-world images, we cannot expect good
energy compaction in a single wavelet domain, because most
real-world images consist of components of a variety of
smoothness. We can relieve this problem by using multiple
wavelet bases to match di�erent characteristics of images.
In this paper, we propose a novel image denoising algorithm
that uses multiple wavelet bases. By establishing a new
relationship between the deterministic Besov space theory
and the wavelet-domain statistical models, we generalize
the Besov theory for �nite sampled data. After de�ning
convex sets in Besov spaces that contain the true image,
we obtain an estimate of the true image by the method
of projection onto convex sets. The algorithm outperforms
existing multiple wavelet basis denoising algorithms; in par-
ticular, it shows excellent performance at low signal-to-noise
ratios.

1. INTRODUCTION

Image restoration from noisy data is an important problem
encountered in many image processing applications. Re-
cently, nonlinear, non-parametric estimation methods based
on linear, unitary transforms have �gured prominently in
denoising real-world signals and images. Wavelets are known
to provide a sparse representation for a wide class of real-
world signals, enabling simple threshold-based denoising
methods.

When the signal is corrupted by additive white Gaus-
sian noise, wavelet-domain thresholding provides excellent
performance for noise removal. Donoho and Johnstone
[1] showed that with a properly chosen threshold, wavelet
thresholding is asymptotically optimal for removing noise
from signals and images in Besov spaces [2].

Recently, there have been many attempts to improve the
denoising performance at small sample sizes by using statis-
tical inference methods based on wavelet statistical models
and Bayesian estimation [3, 4]. It has been shown that op-
timal Bayesian estimation is equivalent to wavelet-domain
thresholding under certain wavelet-domain statistical mod-
els [3]. These approaches have led to the many di�erent
thresholding schemes that outperform the SureShrink algo-
rithm [1] by using di�erent choices of thresholds and some-
times scale-adaptive or spatially-adaptive thresholding.

This work was supported by the National Science
Foundation, grant no. MIP{9457438, DARPA, grant no.
DARPA/AFOSR F49620{97{1{0513, ONR, grant no. N00014{
99-1{0813, and Texas Instruments.
Email: choi@ece.rice.edu, richb@rice.edu
Web: www.dsp.rice.edu

Because wavelet-domain denoising algorithms rely on
the sparse representation of signals in the wavelet domain,
we must choose the wavelet basis to match the signal to be
denoised. There have been several attempts to adaptively
select the basis functions to match the given signal using
either dynamic pruning of a wavelet packet tree to mini-
mize the entropy [5, Sec. 9.3] or basis matching pursuit [5,
Sec. 9.4]. However, the performance of these adaptive basis
selection algorithms is limited, because the library of basis
functions is usually not enough. When di�erent portions
of the signal have di�erent properties, a library of basis
functions with similar shapes is not su�cient for a compact
representation.

For improved denoising performance, the use of multiple
wavelet bases is desirable because each portion of the signal
can be represented compactly in the wavelet domain that
matches its properties. Recently, there have been several
attempts to use more than one wavelet basis for signal de-
noising. In [6], a wavelet-domain empirical Wiener �lter was
used for denoising, and the �lter was designed using a signal
estimate in second wavelet domain. It was later shown that
the two wavelet bases assist each other to alleviate the over-
smoothing e�ect of the usual wavelet-domain thresholding
[7]. In [8], convex projections onto the con�dence tubes de-
�ned around the given noisy signal were used to estimate
the signal. Using multiple con�dence tubes de�ned in mul-
tiple wavelet domains, the algorithm demonstrated a good
denoising performance.

Although the use of multiple wavelet bases for signal
denoising is intuitively appealing, it is not clear how to uti-
lize the multiple bases in a structured fashion. The set of
multiple orthogonal wavelet basis functions is a tight frame
[5], and the usual frame inversion method yields a signal
estimate that is the average of signal estimates in each do-
main. However, if one or more of the wavelet domains does
not represent the signal compactly, then simple averaging
does not necessarily yield an improved result. Furthermore,
existing algorithms using multiple domains are very di�-
cult to analyze, and they are not guaranteed to provide
improved performance.

Besov spaces have emerged as promising new tools for
wavelet-domain signal processing. Because many images
encountered in the real world (\photograph-like" images)
consist of textured regions separated by edges, they possess
particular smoothness characteristics. Besov spaces charac-
terize these smoothness properties. Besov spaces have been
utilized to assess the performance of signal estimation [1] or
compression algorithms [2]. Wavelets provide unconditional
bases for the Besov spaces, and many real-world signals are
known to belong to Besov spaces with certain parameters



[2]. Recently, a direct connection between wavelet thresh-
olding and Besov spaces was revealed through the formu-
lation of signal estimation as a variational regularization
problem in Besov space [9]. The success of this method
indicates a close relationship between wavelet shrinkage al-
gorithms [1] and Besov spaces.

In this paper, we propose a novel signal denoising
scheme that uses multiple wavelet bases. By de�ning con-
vex sets in a Besov space based on multiple wavelet bases,
we de�ne a set of functions that contains the true signal.
By projecting the noisy signal onto this set, we obtain an
excellent signal estimate. We call the convex sets \Besov
balls" because of the close relationship between the convex
sets and Besov spaces. We de�ne multiple convex sets us-
ing multiple wavelet bases and obtain the signal estimate
by alternately projecting onto the Besov balls. The new
algorithm outperforms existing methods in mean-squared-
error (MSE) and in particular shows excellent performance
when the signal-to-noise ratio (SNR) is low.

2. WAVELETS AND BESOV SPACE

The discrete wavelet transform (DWT) represents a one-
dimensional (1-d) signal z(t) in terms of shifted versions
of a lowpass scaling function �(t) and shifted and dilated
versions of a prototype bandpass wavelet function  (t) [5].
For special choices of �(t) and  (t), the functions  j;k(t) =

2j=2 (2jt � k) and �j;k(t) = 2j=2�(2jt � k), with j; k 2 ZZ

form an orthonormal basis, and we have the representation
[5]

z =

1X
j=j0

X
k

wj;k  j;k +
X
k

uj0;k �j0;k; (1)

with uj;k �
R
z(t)��j;k(t)dt and wj;k �

R
z(t) �j;k(t)dt.

The wavelet coe�cient wj;k measures the signal con-
tent around time 2�jk and frequency 2jf0. The scaling
coe�cient uj;k measures the local mean around time 2�jk.
The DWT (1) employs scaling coe�cients only at scale j0;
wavelet coe�cients at scales j > j0 add higher resolution
details to the signal.

We can easily construct two-dimensional (2-d) wavelets
from the 1-d  and � by setting for x � (x; y) 2 IR

2,
 HL(x; y) =  (x)�(y);  LH(x; y) = �(x) (y);  HH(x; y) =
 (x) (y), and �(x; y) = �(x)�(y). If we let 	 �
f HL;  LH;  HHg, then the set of functions f j;k �
2j (2jx � k)g 2	;j2ZZ;k2ZZ2 and f�j;k � 2j�(2jx �

k)gj2ZZ;k2ZZ2 forms an orthonormal basis for L2(IR
2). That

is, for every z 2 L2(IR
2), we have

z =
X

j>j0;k2ZZ
2; 2	

wj;k;  j;k +
X
k2ZZ2

uj0;k�j0;k; (2)

with wj;k; �
R
z(x) j;k(x)dx and

uj0;k �
R
z(x)�j0;k(x)dx.

For the discrete processing of images, the original im-
age is given as the discrete samples of the continuous image
z(x). With proper pre�ltering, we can approximate the dis-
crete samples as the scaling coe�cients of z(x) at a certain
scale J , that is, the sampled image z(k) = uJ;k. Equiva-
lently, we can build a continuous-time image corresponding

to z(k) as ez = X
k2ZZ2

uJ;k�J;k; (3)

or, using wavelet coe�cients

ez = X
j0<j<J;k2ZZ

2; 2	

wj;k;  j;k +
X
k2ZZ2

uj0;k�j0;k; (4)

where the coe�cients wj;k; and uj0;k are easily computed
using the 2-d discrete-time wavelet �lters and decimators
operating on the samples z(k) [5].

Wavelets provide a simple characterization for a wide
variety of function smoothness spaces [2]. The norms of
these spaces measure signal smoothness: smaller norms im-
ply smoother functions. The scale of Besov spaces B�q (Lp),
0 < � <1, 0 < p � 1, 0 < q � 1, are particularly useful,
for they contain many life-like signals. For analyzing � and
 possessing r > � vanishing moments [5], the Besov norm
kzkB�

q (Lp)
can be de�ned as a sequence norm on the wavelet

coe�cients of z [2]

kzkB�
q (Lp)

�kuj0;kkp+

0@X
j�j0

 X
k; 2	

2j(�p+p�2)jwj;k; j
p

!q

p

1A1

q

:

(5)
The three hyperparameters have natural interpretations: a
p-norm of the wavelet coe�cients is taken within each scale
j, a weighted q-norm is taken across scale, and the smooth-
ness parameter � controls the rate of decay of the wj;k; 
across scale (frequency). Roughly speaking, the parameter
� corresponds to the number of well-behaved derivatives of
z in Lp; hence, the larger the �, the smoother the func-
tions in B�q (Lp) [2]. Do not be misled by the terminology
\smoothness space" | for � < 1, Besov spaces contain
discontinuous functions.

In the applications of signal and image processing, we
have two particular cases of interest. The �rst case is when
p = q. Then the Besov norm reduces to

kzkB�
p (Lp)

�kuj0;kkp +

 X
j�j0;k; 2	

2j(�p+p�2)jwj;k; j
p

! 1

p

;

(6)
which is a simple weighted p-norm of the wavelet coe�-
cients. A simple but useful set of the Besov spaces are
the Sobolev spaces, obtained as W�(L2) � B�2 (L2), which
measure smoothness of order � in L2. Another Besov
space of interest to image processing is B1

1(L1), because
B1
1(L1) � BV � B1

1(L1) and typical real-world images be-
long to BV [9]. The corresponding norm is

kzkB1
1
(L1)

� kuj0;kkp + sup
j�j0

X
k; 2	

jwj;k; j: (7)

3. INDEPENDENT GENERALIZED GAUSSIAN

WAVELET-DOMAIN MODELS

Besov spaces provide a deterministic model of real-world
images, in contrast to a statistical model [3, 4]. However,
these ideas are intimately intertwined, as we now show.



After reviewing a simple statistical wavelet-domain image
model in this section, we make connections with Besov
spaces in Section 4.

The simplest wavelet statistical models are obtained
by assuming that the wavelet coe�cients are independent
of each other. This assumption is motivated by the ap-
proximate decorrelation property of wavelet transforms [5].
Under the independence assumption, modeling reduces to
specifying the marginal distribution of each wavelet coe�-
cients.

The popular Gaussian distribution is not appropriate
for modeling the peaky, heavy-tailed marginal distribution
of wavelet coe�cients. After Mallat et al. [10] discovered
that the statistics of wavelet coe�cients of real-world im-
ages are well approximated with the generalized Gaussian
distribution (GGD), there have been attempts to model the
wavelet coe�cients statistically using the GGD priors in the
context of Bayesian inference [3, 4].

The zero-mean GGD function GGD�(0; �
2) with shape

parameter � and variance �2 is de�ned as

f(x) =
��(�)

2�(1=�)

1

�
exp f�[�(�)jxj=�]�g ; (8)

with �(�) =
q

�(3=�)
�(1=�)

. The GGD model includes the Gaus-

sian and Laplacian distribution as special cases, using � = 2
and � = 1, respectively.

Under an independent GGD wavelet model, we posit
that each wavelet coe�cient is generated independently
according to a zero-mean GGD. For the tractability of
the model, all wavelet coe�cients at each scale are as-
sumed to be independent and identically distributed (iid-
in-scale). That is, under the independent GGD model, we

have wj;k; 
iid
� GGD�j (0; �

2
j ). Due to the iid-in-scale as-

sumption, the shape parameter �j and the variance �2j do
not depend on the spatial location k.

The shape parameter �j of the GGD function at scale j
characterizes the peakiness and the heavy tail of the actual
distribution of the wavelet coe�cients. We may specify the
shape parameters without reference to the given data, be-
cause most real-world images tend to have similar energy
compaction in the wavelet domain [3]. For practical appli-
cations, further simpli�cation of the model comes from as-
suming that the shape parameter �j is same over all scales.

The variance �2j represents the signal energy at scale j.
It can be empirically estimated based on the given data by
estimating the variance of wavelet coe�cients at each scale
[3], or it can be speci�ed to decay exponentially based on
the 1=f spectral behavior of real-world images.

In summary, an independent GGD wavelet model �
with exponentially decaying variance (1=f model) takes the
form

� : wj;k; 
iid
� GGD�(0; �

2
j ) with �j = 2�j��0: (9)

Because the decay of wavelet coe�cients across scale
determines the smoothness of the underlying signal, the re-
alizations of the independent GGD model in (9) with ex-
ponentially decaying variance can be shown to belong to
certain scales of Besov space [11].

4. STATISTICAL INTERPRETATION OF

BESOV SPACES

Although the GGD model in (9) is seemingly unrelated to
the theory of Besov spaces, there exists an interpretation of
the Besov norm in terms of the likelihood function under
the model in (9). This relation enables us to generalize
the Besov space theory to the set of �nite sampled images,
yielding the notion of the \Besov ball" that is applicable to
practical image processing problems.

4.1. Normalized likelihood function

Given the pdf f(xj�) of a random variable x under a model
� and realizations x1 and x2, we can compute the likeli-
hoods of the data f(x1j�) and f(x2j�). The likelihoods
indicate how \likely" the given data are under the given
pdf; for instance, f(x1j�) > f(x2j�) means that x1 is more
likely than x2 under the model.

However, the likelihood f(x1j�) is meaningful only
when it is compared with another likelihood such as
f(x2j�), and we cannot quantify how likely x1 is merely
based on the value f(x1j�). To be able to tell how likely
an observation is under a given pdf model, we need to nor-
malize the likelihood appropriately. A natural way of ac-
complishing the normalization is to compare the likelihood
with the maximum likelihood achievable. We de�ne the
normalized likelihood function fN (xj�) by

fN (xj�) =
f(xj�)

supx f(xj�)
; (10)

with the assumption that 0 < supx f(xj�) < 1. Then,
fN (xj�) 2 [0; 1], and we can say that an observation x is
\likely" if fN (xj�) is close to 1 and not likely if it is close
to 0. We can easily generalize the concept of the normalized
likelihood to �nite random vectors using their joint pdfs.

For discrete random processes, the joint pdf of an in�-
nite random vector is not de�ned, and we cannot de�ne the
normalized likelihood as in (10). However, we can generalize
the normalized likelihood using the limit of the normalized
likelihood when the limit exists.

Let x1;x2; : : : be an in�nite sequence of random vari-
ables. Then for the vector of the �rst n random variables
xn = fxkg

n
k=1, we can de�ne the normalized likelihood

fNn (xn) using (10). Then, if the limit limn!1 fNn exists,
we de�ne the normalized log likelihood of the in�nite se-
quence to be the limit.

For the independent wavelet-domain model considered
in Section 3, we can take the limit as we move to the �ne
scales and de�ne the normalized likelihood as

fN (w) = lim
J!1

QJ

j=0

Q
k; 

fj;k; (wj;k; )

sup
QJ

j=0

Q
k; 

fj;k; (wj;k; )
; (11)

when wj;k; � fj;k; (wj;k; ). For the independent GGD
model with exponentially decaying variance de�ned in (9),
the normalized likelihood is well de�ned because the supre-
mum is �nite and the limit exists.

4.2. Besov spaces and the GGD model

Consider an independent GGD model ��
p for the wavelet

coe�cients with wj;k; modeled as a zero-mean GGD model



as in (9) with � = p and � = s+ 2� 2=p. In this case, it is
easy to see that1

� log fN (wj��
p ) = Ckzkp

B�
p (Lp)

; (12)

the homogeneous Besov norm of the image z. When p = 2,
we obtain an iid Gaussian model for the wavelet coe�cients
and the corresponding normalized negative log likelihood is
equivalent to the Sobolev norm of the function.

In terms of normalized likelihood function for the iid
GGD model ��

p , the Besov space B�p (Lp) can be equiva-

lently de�ned as the set fw : fN (wj��
p ) 6= 0g. Thus, the

signals in the Besov space B�p (Lp) are the \likely" signals
under the statistical model ��

p .
The characterization of Besov space in terms of the like-

lihood function can be generalized to other scales of Besov
space (with p 6= q) that are of interest in image processing.
For B1

1(L1), for instance, we are interested in the scale-
by-scale normalized likelihood under the GGD model with
� = 1 and � = 0. It is easily shown that B1

1(L1) = fw :
infj g

N
j (w) > 0g, where gNj (w) =

Q
k; 

exp (jwj;k; j=�0)

is the normalized log likelihood of the wavelet coe�cients
at scale j. That is, rather than the joint likelihood of all the
wavelet coe�cients, B1

1(L1) is concerned with the scale of
least likelihood.

4.3. Besov balls for �nite data

In practice, the available data are a �nite number of sam-
ples of the image, and we cannot have wavelet coe�cients
beyond a certain �ne scale. Suppose we have wavelet coef-
�cients up to scale J , and that the coe�cients with scale
j > J are unknown. Let wJ be the vector of available
wavelet coe�cients. Then, the de�nition of Besov space
must be modi�ed appropriately. The set of \likely" sig-
nals can be modi�ed as fwJ : fNJ (wJ j�

�
p ) � �g, where

fNJ (wJ j�
�
p ) is the normalized likelihood of the (�nite) vec-

tor wJ and � is a positive constant controlling the \likeli-
hood" of signals. We can choose � so that the set contains
the images of interest. This is a generalization of the Besov
space for �nite data, which has not been investigated to
date.

In general, the de�nition of the Besov spaces is con-
cerned with the asymptotic decay of the signal energy across
scales, and it is impossible to apply the same theory to �nite
data (all �nite truncated wavelet transforms always have �-
nite Besov norms). The above generalization of the Besov
space for �nite data is thus interesting in its own right.

Under the independent GGD model, the negative log
likelihood function is the truncated form of the Besov norm
de�ned in (6), and the set of signals is a \ball" in Besov
space de�ned as fx : kxkB � Rg, where R is the radius of
the ball and k � kB is the truncated Besov norm for �nite
samples. Although we considered the homogeneous Besov
spaces B�p (Lp) above, the Besov balls can be de�ned for
other scales of Besov spaces in the same way. If p; q � 1,
Besov balls are convex sets in Lp.

5. BESOV BALL DENOISING ALGORITHM

The notion of a Besov ball for �nite sampled data leads
us to an intuitively appealing signal denoising algorithm.

1It can be shown that the realizations of this GGD model
belong to the Besov space almost surely [11, 12].

Given an image z, we model the noisy observation as z+n,
with n an additive Gaussian white noise with variance �2.
The estimation problem is to restore the original image z
from the noisy observation z+n. We can project the noisy
observation z + n onto a Besov ball de�ned as above to
obtain an estimate of the original signal that is close to the
given observation and is \likely" in terms of the underlying
wavelet statistical model.

Suppose that we have M di�erent wavelet bases,
W1; : : : ;WM , and that the number of vanishing moments
of each wavelet basis is greater than the Besov smoothness
parameter � of the Besov space under consideration. For
each wavelet basis Wi, we de�ne the Besov ball Bi(ri) with
radius ri as Bi(ri) = fz : kzkB � rig where the norm is
the truncated Besov norm de�ned using wavelet basis Wi.
With properly chosen ri, the original signal z is in Bi(ri)
for all i, and hence we have z 2 \iBi(ri). To obtain an esti-
mate of z, we project the noisy signal z+n onto \iBi(ri) in
the l2 sense. We can �nd the projection using the method
of projection onto convex sets (POCS) [13] starting from
z + n. For an N � N image, each Besov ball Bi(ri) is a

convex set in IR
N2

.
As we change the radius ri, the size of the Besov ball

changes. In IR
N2

, the change of basis from one orthonor-
mal wavelet domain to another orthonormal wavelet domain
corresponds to a rotation of the coordinate axes, and hence
each Besov ball Bi(ri) is a rotation of other Besov balls
de�ned using other wavelet transforms. Multiple wavelet
bases de�ne Besov balls with di�erent rotations and possi-
bly with di�erent sizes, but all contain the original image z.
As we increase the number of wavelet domains, the size of
the intersection \iBi(ri) never increases, and it de�nes an
ever smaller set of feasible signals. By projecting the noisy
signal onto this small convex set, we can improve over a
single-basis denoising algorithm.

The proper choice of the radii of the Besov balls is es-
sential for the success of the algorithm. This is analogous to
choosing the threshold in wavelet thresholding. We should
choose each ri so that the Besov ball Bi(ri) contains the
true noise-free image z. At the same time, ri should be
chosen as small as possible for accurate denoising. Ideally,
ri should be chosen as ri = kzkB , where the norm is the
truncated Besov norm de�ned using basis Wi. However,
because z is unknown, we must estimate kzkB .

One method of estimating the Besov norm of z is to
compute the Besov norm of an estimate of z obtained us-
ing some other denoising method. A natural choice is the
Besov norm of the denoised signal using Donoho and John-
stone's universal thresholding [1]. However, because the
signal is over-smoothed by this universal thresholding, we
need to choose somewhat larger ri than the Besov norm
of the thresholded signal. For real images, we found out
that 1.5 to 2 times the Besov norm of the SureShrink sig-
nal estimate provides a good estimate of the actual Besov
norm.

The choice of underlying Besov space B�q (Lp) depends
on the properties of the data to be denoised. For real world
images, we found that B1

1(L1) yields good performance as
well as simple numerical implementation.

Figure 1 compares the PSNR (10 log10(
2552

MSE
)) of various

denoising methods for a real image. As the wavelet bases,



(a) (b)

(c) (d)

(e) (f)

Figure 1: Image denoising using projections onto Besov
balls. (a) 512 � 512 original image with 256 gray levels.
(b) Noisy image (� = 35, PSNR = 17.2dB). (c) Matlab's
spatially adaptive Wiener �lter (3 � 3 window, PSNR =
27.0dB). (d) Hard thresholding in D12 domain using thresh-
old chosen to maximize PSNR (PSNR = 26.1dB), (e) Con-
�dence tube denoising algorithm of Ishwar et al. [8] us-
ing D6; D8; D10; D12 and D14 (PSNR = 27.5dB). (f) Besov
ball projection in B1

1(L1) using the same 5 wavelet bases
(PSNR = 28.3dB).

we used Daubechies orthonormal wavelet �lters. Here, Dn
refers to the Daubechies length-n �lter. We observe that
the proposed denoising algorithm using 5 di�erent wavelet
bases outperforms other existing multiple-basis denoising
methods both visually and in MSE. In particular, the Besov
ball algorithm outperforms the recently proposed con�-
dence tube algorithm [8] by almost 1dB. In the denoising
simulations involving many di�erent images and di�erent
noise variances, the Besov ball algorithm demonstrated ex-
cellent performance, especially when the SNR was low.

6. CONCLUSIONS

In this paper, we have proposed a novel \Besov ball" de-
noising algorithm that uses multiple wavelet bases. The
performance of the algorithm is superior to other state-of-
the-art multiple-basis denoising algorithms.

The basis of the proposed denoising algorithm is the

relationship between the Besov norm and the normalized
likelihood under a wavelet-domain statistical model. This
relationship generalizes the Besov space theory for practical
image processing problems.

Currently we are working to generalize the concept of
Besov balls to other, more accurate statistical image mod-
els, obtaining a set or space containing real-world images
with a measure telling how each of the elements resembles
a real, photograph-like image [11].
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