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Abstract

Wavelets have proven to be powerful bases for use in numerical
analysis and signal processing. Their power lies in the fact that
they only require a small number of coefficients to represent gen-
eral functions and large data sets accurately. This allows compres-
sion and efficient computations. Classical constructions have been
limited to simple domains such as intervals and rectangles. In this
paper we present a wavelet construction for scalar functions defined
on the sphere. We show how biorthogonal wavelets with custom
properties can be constructed with the lifting scheme. The bases
are extremely easy to implement and allow fully adaptive subdivi-
sions. We give examples of functions defined on the sphere, such
as topographic data, bidirectional reflection distribution functions,
and illumination, and show how they can be efficiently represented
with spherical wavelets.
CR Categories and Subject Descriptors: I.3.0 [Computer Graphics]:
General; G.1.0 [Numerical Analysis]: General – Numerical Algorithms;
G.1.1 Interpolation – Smoothing; G.1.2 Approximation – Nonlinear Ap-
proximation.

Additional Key Words and Phrases: wavelets, sphere.

1 Introduction

1.1 Wavelets

Over the last decade wavelets have become an exceedingly pow-
erful and flexible tool for computations and data reduction. They
offer both theoretical characterization of smoothness, insights into
the structure of functions and operators, and practical numerical
tools which lead to faster computational algorithms. Examples of
their use in computer graphics include surface and volume illumi-
nation computations [16, 29], curve and surface modeling [17], and
animation [18] among others. Given the high computational de-
mands and the quest for speed in computer graphics, the increasing
exploitation of wavelets comes as no surprise.

While computer graphics applications can benefit greatly from
wavelets, these applications also provide new challenges to the
underlying wavelet technology. One such challenge is the con-
struction of wavelets on general domains as they appear in graphics
applications.

Classically, wavelet constructions have been employed on infi-
nite domains (such as the real line R and plane R2). Since most
practical computations are confined to finite domains a number of
boundary constructions have also been developed [5]. However,
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Figure 1: The geodesic sphere construction starting with the icosa-
hedron on the left (subdivision level 0) and the next 2 subdivision
levels.

wavelet type constructions for more general manifolds have only
recently been attempted and are still in their infancy.

Our work is inspired by the ground breaking work of Lounsbery
et al.[20, 19] (hereafter referred to as LDW). While their primary
goal was to efficiently represent surfaces themselves we examine
the case of efficiently representing functions defined on a surface,
and in particular the case of the sphere.

Although the sphere appears to be a simple manifold, techniques
from R2 do not easily extend to the sphere. Wavelets are no excep-
tion. The first construction of wavelets on the sphere was introduced
by Dahlke et al.[6] using a tensor product basis where one factor
is an exponential spline. To our knowledge a computer imple-
mentation of this basis does not exist at this moment. A continuous
wavelet transform and its semi-discretization were proposed in [13].
Both these approaches make use of a ('; �) parameterization of the
sphere. This is the main difference with our method, which is
parameterization independent.

Aside from being of theoretical interest, a wavelet construction
for the sphere leading to efficient algorithms, has practical appli-
cations since many computational problems are naturally stated on
the sphere. Examples from computer graphics include: manipula-
tion and display of earth and planetary data such as topography and
remote sensing imagery, simulation and modeling of bidirectional
reflection distribution functions, illumination algorithms, and the
modeling and processing of directional information such as envi-
ronment maps and view spheres.

In this paper we describe a simple technique for constructing
biorthogonal wavelets on the sphere with customized properties.
The construction is an incidence of a fairly general scheme referred
to as the lifting scheme [27, 28].

The outline of the paper is as follows. We first give a brief
review of applications and previous work in computer graphics in-
volving functions on the sphere. This is followed by a discussion
of wavelets on the sphere. In Section 3 we explain the basic ma-
chinery of lifting and the fast wavelet transform. After a section
on implementation, we report on simulations and conclude with a
discussion and suggestions for further research.

1.2 Representing Functions on the Sphere

Geographical information systems have long had a need to repre-
sent sampled data on the sphere. A number of basic data structures
originated here. Dutton [10] proposed the use of a geodesic sphere



Figure 2: Recursive subdivision of the octahedral base shape as
used by LDW for spherelike surfaces. Level 0 is shown on the left
followed by levels 2 and 4.

construction to model planetary relief, see Figure 1 for a picture of
the underlying subdivision. More recently, Fekete [12] described
the use of such a structure for rendering and managing spherical geo-
graphic data. By using hierarchical subdivision data structures these
workers naturally built sparse adaptive representations. There also
exist many non-hierarchical interpolation methods on the sphere
(for an overview see [22]).

An important example from computer graphics concerns the rep-
resentation of functions defined over a set of directions. Perhaps
the most notable in this category are bidirectional reflectance distri-
bution functions (BRDFs) and radiance. The BRDF, fr(~!i; ~x; ~!o),
describes the relationship at a point~xon a surface between incoming
radiance from direction ~!i and outgoing radiance in direction ~!o.
It can be described using spherical harmonics, the natural extension
of Fourier basis functions to the sphere, see e.g. [30]. These basis
functions are globally supported and suffer from some of the same
difficulties as Fourier representations on the line such as ringing. To
our knowledge, no fast (FFT like) algorithm is available for spheri-
cal harmonics. Westin et al. [30] used spherical harmonics to model
BRDFs derived from Monte Carlo simulations of micro geometry.
Noting some of the disadvantages of spherical harmonics, Gondek
et al.[15] used a geodesic sphere subdivision construction [10, 12]
in a similar context.

The result of illumination computations, the radiance L(~x; ~!),
is a function which is defined over all surfaces and all directions.
For example, Sillion et al. [26] used spherical harmonics to model
the directional distribution of radiance. As in the case of BRDF
representations, the disadvantages of using spherical harmonics to
represent radiance are due to the global support and high cost of
evaluation. Similarly no locally controlled level of detail can be
used.

In finite element based illuminations computations wavelets have
proven to be powerful bases, see e.g. [24, 3]. By either reparame-
terizing directions over the set of visible surfaces [24], or mapping
them to the unit square [3], wavelets defined on standard domains
(rectangular patches) were used.

Mapping classical wavelets on some parameter domain onto the
sphere by use of a parameterization provides one avenue to con-
struct wavelets on the sphere. However, this approach suffers from
distortions and difficulties due to the fact that no globally smooth
parameterization of the sphere exists. The resulting wavelets are
in some sense “contaminated” by the parameterization. We will
examine the difficulties due to an underlying parameterization, as
opposed to an intrinsic construction, when we discuss our construc-
tion.

We first give a simple example relating the compression of sur-
faces to the compression of functions defined on surfaces.

1.3 An Example

LDW constructs wavelets for surfaces of arbitrary topological type
which are parameterized over a polyhedral base complex. For the
case of the sphere they employed an octahedral subdivision domain
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Figure 3: A simple example of
refinement on the line. The ba-
sis functions at the top can be
expressed as linear combina-
tions of the refined functions at
the bottom.

(see Figure 2). In this framework a given goal surface such as the
earth is parameterized over an octahedron whose triangular faces
are successively subdivided into four smaller triangles. Each vertex
can now be displaced radially to the limit surface. The resulting
sequence of surfaces then represents the multiple levels of detail
representation of the final surface.

As pointed out by LDW compressing surfaces is closely related
to compressing functions on surfaces. Consider the case of the unit
sphere and the function f(s) = f(�; ') = cos2 � with s 2 S2.
We can think of the graph of this function as a surface over the
sphere whose height (displaced along the normal) is the value of
the function f . Hence an algorithm which can compress surfaces
can also compress the graph of a scalar function defined over some
surface.

At this point the domain over which the compression is defined
becomes crucial. Suppose we want to use the octahedronO. Define
the projection T : O �! S2, s = T (p) = p=kpk. We then have
f̃(p) = f(T (p)) with p 2 O. Compressing f(s) with wavelets
on the sphere is now equivalent to compressing f̃(p) with wavelets
defined on the octahedron. While f is simply a quadratic function
over the sphere, f̃ is considerably more complicated. For example
a basis over the sphere which can represent quadratics exactly (see
Section 3.4) will trivially represent f . The same basis over the
octahedron will only be able to approximate f̃ .

This example shows the importance of incorporating the un-
derlying surface correctly for any construction which attempts to
efficiently represent functions defined on that surface. In case of
compression of surfaces themselves one has to assume some canon-
ical domain. In LDW this domain was taken to be a polyhedron.

By limiting our program to functions defined on a fixed surface
(sphere) we can custom tailor the wavelets to it and get more effi-
ciency. This is one of the main points in which we depart from the
construction in LDW.

2 Wavelets on the Sphere

2.1 Second Generation Wavelets

Wavelets are basis functions which represent a given function at
multiple levels of detail. Due to their local support in both space
and frequency, they are suited for sparse approximations of func-
tions. Locality in space follows from their compact support, while
locality in frequency follows from their smoothness (decay towards
high frequencies) and vanishing moments (decay towards low fre-
quencies). Fast O(n) algorithms exist to calculate wavelet coeffi-
cients, making the use of wavelets efficient for many computational
problems.

In the classic wavelet setting, i.e., on the real line, wavelets are
defined as the dyadic translates and dilates of one particular, fixed
function. They are typically built with the aid of a scaling function.
Scaling functions and wavelets both satisfy refinement relations
(or two scale relations). This means that a scaling function or
wavelet at a certain level of resolution (j) can be written as a linear
combination of scaling basis functions of the same shape but scaled
at one level finer (level j + 1), see Figure 3 for an example.

The basic philosophy behind second generation wavelets is to
build wavelets with all desirable properties (localization, fast trans-
form) adapted to much more general settings than the real line, e.g.,



Functions

'j;k; k 2 K(j) primal scaling functions

'̃j;k; k 2 K(j) dual scaling functions

 j;m; m 2M(j) primal wavelets

 ̃j;m; m 2M(j) dual wavelets

Biorthogonality relationships

h'j;k; '̃j;k0 i = �k;k0 'j;k and '̃j;k0 are biorthogonal

h j;m;  ̃j0;m0i = �m;m0�j;j0  j;m and  ̃j0;m0 are biorthogonal

h'j;k;  ̃j;mi = 0 Vj ? W̃j

h j;m; '̃j;ki = 0 Wj ? Ṽj

Vanishing moment relations

 ̃j;m has N vanishing moments 'j;k reprod. polyn. degree < N

 j;m has eN vanishing moments '̃j;k reprod. polyn. degree < eN
Refinement relations

'j;k =
P

l2K(j+1)
hj;k;l 'j+1;l scaling function refinement eq.

'̃j;k =
P

l2K(j+1)
h̃j;k;l '̃j+1;l dual scaling function refinement eq.

 j;m =
P

l2K(j+1)
gj;m;l 'j+1;l wavelet refinement equation

 ̃j;m =
P

l2K(j+1)
g̃j;m;l '̃j+1;l dual wavelet refinement equation

Vj = clos spanf'j;k j k 2 K(j)g with V0 the coarsest space

Wj = clos spanf j;m j m 2 M(j)g withW0 the coarsest space

Vj �Wj = Vj+1 wavelets encode difference between

levels of approximation

Wavelet transforms

�j;k = hf; '̃j;ki scaling function coefficient

j;m = hf;  ̃j;mi wavelet coefficient

Forward Wavelet Transform (Analysis)

�j;k =
P

l2K(j)
h̃j;k;l �j+1;l scaling function coeff., fine to coarse

j;m =
P

l2M(j)
g̃j;m;l �j+1;l wavelet coeff., fine to coarse

Inverse Wavelet Transform (Synthesis)

�j+1;l =
P

k2K(j)
hj;k;l �j;k scaling function coeff., coarse to fine

+
P

m2M(j)
gj;m;l j;m

Table 1: Quick reference to the notation and some basic relation-
ships for the case of second generation biorthogonal wavelets.

wavelets on manifolds. In order to consider wavelets on a surface,
we need a construction of wavelets which are adapted to a measure
on the surface. In the case of the real line (and classical con-
structions) the measure is dx, the usual translation invariant (Haar)
Lebesgue measure. For a sphere we will denote the usual area
measure by d!. Adaptive constructions rely on the realization that
translation and dilation are not fundamental to obtain the wavelets
with the desired properties. The notion that a basis function can be
written as a finite linear combination of basis functions at a finer,
more subdivided level, is maintained and forms the key behind the
fast transform. The main difference with the classical wavelets is
that the filter coefficients of second generation wavelets are not the
same throughout, but can change locally to reflect the changing
(non translation invariant) nature of the surface and its measure.

Classical wavelets and the corresponding filters are constructed
with the aid of the Fourier transform. The underlying reason is that
translation and dilation become algebraic operations after Fourier
transform. In the setting of second generation wavelets, translation
and dilation can no longer be used, and the Fourier transform thus
becomes worthless as a construction tool. An alternative construc-
tion is provided by the lifting scheme.

2.2 Multiresolution Analysis

We first introduce multiresolution analysis and wavelets and set
some notation. For more mathematical detail the reader is referred
to [9]. All relationships are summarized in Table 1.

Consider the function space L2 = L2(S2; d!), i.e., all functions

of finite energy defined over S2. We define a multiresolution anal-
ysis as a sequence of closed subspaces Vj � L2, with j > 0, so
that

I Vj � Vj+1, (finer spaces have higher index)
II
S

j>0 Vj is dense in L2,

III for each j, scaling functions 'j;k with k 2 K(j) exist so that
f'j;k j k 2 K(j)g is a Riesz basis1 of Vj .

Think ofK(j) as a general index set where we assume thatK(j) �
K(j + 1). In the case of the real line we can take K(j) = 2�jZ,
while for an interval we might haveK(j) = f0; 2�j ; : : : ; 1�2�jg.
Note that, unlike the case of a classical multiresolution analysis, the
scaling functions need not be translates or dilates of one particular
function. Property (I) implies that for every scaling function 'j;k,
coefficients fhj;k;lg exist so that

'j;k =
P

l
hj;k;l 'j+1;l: (1)

The hj;k;l are defined for j > 0, k 2 K(j), and l 2 K(j + 1).
Each scaling function satisfies a different refinement relation. In
the classical case we have hj;k;l = hl�2k , i.e., the sequences hj;k;l
are independent of scale and position.

Each multiresolution analysis is accompanied by a dual multires-
olution analysis consisting of nested spaces Ṽj with bases given by
dual scaling functions '̃j;k, which are biorthogonal to the scaling
functions:

h'j;k; '̃j;k0i = �k;k0 for k; k0 2 K(j);

where hf; gi =
R
f g d! is the inner product on the sphere. The

dual scaling functions satisfy refinement relations with coefficients
fh̃j;k;lg.

In case scaling functions and dual scaling functions coincide,
('j;k = '̃j;k for all j and k) the scaling functions form an orthog-
onal basis. In case the multiresolution analysis and the dual mul-
tiresolution analysis coincide (Vj = Ṽj for all j but not necessarily
'j;k = '̃j;k) the scaling functions are semi-orthogonal. Orthog-
onality or semi-orthogonality sometimes imply globally supported
basis functions, which has obvious practical disadvantages. We
will assume neither and always work in the most general biorthog-
onal setting (neither the multiresolution analyses nor the scaling
functions coincide), introduced for classical wavelets in [4].

One of the crucial steps when building a multiresolution analysis
is the construction of the wavelets. They encode the difference
between two successive levels of representation, i.e., they form a
basis for the spacesWj whereVj�Wj = Vj+1. Consider the set of
functions f j;m j j > 0; m 2 M(j)g, where M(j) � K(j + 1)
is again an index set. If

1. the set is a Riesz basis for L2(S2),
2. the set f j;m j m 2 M(j)g is the Riesz basis of Wj ,

we say that the  j;m define a spherical wavelet basis. Since Wj �
Vj+1, we have

 j;m =
P

l
gj;m;l 'j+1;l for m 2M(j): (2)

An important property of wavelets is that they have vanishing
moments. The wavelets  j;m have eN vanishing moments if eN
independent polynomials Pi, 0 6 i < eN exist so that

h j;m; Pii = 0;

for all j > 0;m 2 M(j). Here the polynomials Pi are defined as
the restriction to the sphere of polynomials on R3. Note that inde-
pendent polynomials on R3 can become dependent after restriction
to the sphere, e.g., f1; x2; y2; z2g.

1A Riesz basis of some Hilbert space is a countable subset ffkg so that every
element f of the space can be written uniquely as f =

P
k
ck fk , and positive

constants A and B exist withA kfk2 6
P

k
jck j

2 6 B kfk2.



For a given set of wavelets we have dual basis functions  ̃j;m
which are biorthogonal to the wavelets, or h j;m;  ̃j0;m0i =
�m;m0 �j;j0 for j; j0 > 0; m 2 M(j); m0 2 M(j0). This implies
h ̃j;m; 'j;ki = h'̃j;k;  j;mi = 0 for m 2 M(j) and k 2 K(j),
and for f 2 L2 we can write the expansion

f =
P

j;m
h ̃j;m; fi j;m =

P
j;m

j;m  j;m (3)

Given all of the above relationships we can also write the scaling
functions'j+1;l as a linear combination of coarser scaling functions
and wavelets using the dual sequences (cf. Eqs. (1,2))

'j+1;l =
P

k
h̃j;k;l 'j;k +

P
m
g̃j;m;l  j;m:

If not stated otherwise summation indices are understood to run
over k 2 K(j), l 2 K(j + 1), and m 2M(j).

Given the set of scaling function coefficients of a function f ,
f�n;k = hf; '̃j;ki j k 2 K(n)g where n is some finest resolution
level, the fast wavelet transform recursively calculates the fj;m j
0 6 j < n; m 2 M(j)g, and f�0;k j k 2 K(0)g, i.e., the coarser
approximations to the underlying function. One step in the fast
wavelet transform computes the coefficients at a coarser level (j)
from the coefficients at a finer level (j + 1)

�j;k =
P

l
h̃j;k;l �j+1;l and j;m =

P
l
g̃j;m;l �j+1;l:

A single step in the inverse transform takes the coefficients at the
coarser levels and reconstructs coefficients at a finer level

�j+1;l =
P

k
hj;k;l �j;k +

P
m
gj;m;l j;m:

3 Wavelet Construction and Transform

We first discuss the lifting scheme [27, 28]. After the introduc-
ing of the algebra we consider two important families of wavelet
bases, interpolating and generalized Haar. At the end of this section
we give a concrete example which shows how the properties of a
given wavelet basis can be improved by lifting it and lead to better
compression.

Lifting allows us to build our bases in a fully biorthogonal frame-
work. This ensures that all bases are of finite (and small) support
and the resulting filters are small and easy to derive. As we will see
it is also straightforward to incorporate custom constraints into the
resulting wavelets.

3.1 The Lifting Scheme

The whole idea of the lifting scheme is to start from one basic
multiresolution analysis, which can be simple or even trivial, and
construct a new, more performant one, i.e., the basis functions are
smoother or the wavelets have more vanishing moments. In case
the basic filters are finite we will have lifted filters which are also
finite.

We will denote coefficients of the original multiresolution anal-
ysis with an extra superscript o (from old or original), starting with
the filters hoj;k;l, h̃

o
j;k;l, g

o
j;k;l, and g̃oj;k;l. The lifting scheme now

states that a new set of filters can be found as

hj;k;l = hoj;k;l; gj;m;l = goj;m;l �
P

k
sj;k;m hj;k;l;

g̃oj;m;l = g̃j;m;l; h̃j;k;l = h̃oj;k;l +
P

m
sj;k;m g̃j;m;l;

and that, for any choice of fsj;k;mg, the new filters will automat-
ically be biorthogonal, and thus lead to an invertible transform.
The scaling functions 'j;l are the same in the original and lifted
multiresolution analysis, while the dual scaling function and primal
wavelet change. They now satisfy refinement relations

 j;m =
P

l
goj;m;l 'j+1;l �

P
k
sj;k;m 'j;k (4)

'̃j;k =
P

l
h̃oj;k;l '̃j+1;l +

P
m
sj;k;m  ̃j;m:

Note that the dual wavelet has also changed since it is a linear
combination (with the old coefficients g̃o) of a now changed dual

scaling function. Equation (4) is the key to finding the fsj;k;m j kg
coefficients. Since the scaling functions are the same as in the
original multiresolution analysis, the only unknowns on the right
hand side are the sj;k;m. We can choose them freely to enforce
some desired property on the wavelets  j;m. For example, in case
we want the wavelet to have vanishing moments, the condition that
the integral of a wavelet multiplied with a certain polynomial Pi is
zero can now be written as

0 =
P

l
goj;m;lh'j+1;l; Pii �

P
k
sj;k;m h'j;k; Pii:

For a fixed j and m, this is a linear equation in the unknowns
fsj;k;m j kg. If we choose the number of unknown coefficients
sj;k;m equal to the number of equationsN , we need to solve a linear
system for each j and m of size N �N . A priori we do not know
if this linear system can always be solved. We will come back to
this later.

The fast wavelet transform after lifting can be written as

j;m =
P

l
g̃oj;m;l �j+1;l

�j;k =
P

l
h̃oj;k;l �j+1;l +

P
m
sj;k;m j;m;

i.e., as a sequence of two steps. First the old dual high and low
pass filters. Next the update of the old scaling function coefficients
with the wavelet coefficients using the fsj;k;m j kg. The inverse
transform becomes

�j+1;l =
P

k
hoj;k;l

�
�j;k �

P
m
sj;k;m j;m

�
+
P

m
goj;m;l j;m:

Instead of writing everything as a sequence of two steps involving
fsj;k;m j kg we could have formed the new filters h and g̃ first
and then applied those in a single step. Structuring the new filters
as two stages, however, simplifies the implementation considerably
and is also more efficient.

Remarks:
1. The multiple index notation might look confusing at first sight,

but its power lies in the fact that it immediately corresponds to
the data structure of the implementation. The whole transform
can also be written as one giant sparse matrix multiplication,
but this would obscure the implementation ease of the lifting
scheme.

2. Note how the inverse transform has a simple structure directly
related to the forward transform. Essentially the inverse trans-
form subtracts exactly the same linear combination of wavelet
coefficients from �j;k as was added in the forward transform.

3. It is also possible to keep the dual scaling function fixed and put
the conditions on the dual wavelet. The machinery is exactly
the same provided one switches primals and duals and thus
toggles the tildes in the equations. We refer to this as the dual
lifting scheme, which employs coefficients s̃j;k;m. It allows us
to improve the performance of the dual wavelet. Typically, the
number of vanishing moments of the dual wavelet is important
to achieve compression. Also, the lifting scheme and the dual
lifting scheme can be alternated to bootstrap one’s way up to a
desired multiresolution analysis (cakewalk construction).

4. The construction in LDW can be seen as a special case of the
lifting scheme. They use the degrees of freedom to achieve
pseudo-orthogonality (i.e., orthogonality between scaling func-
tion and wavelets of one level within a small neighborhood)
starting from an interpolating wavelet. The lifting scheme is
more general in the sense that it uses a fully biorthogonal setting
and that it can start from any multiresolution analysis with finite
filters. The pseudo-orthogonalization requires the solution of
linear systems which are of the size of the neighborhood (typi-
cally 24 by 24). Since many wavelets may in fact be the same
caching of matrix computations is possible.

5. After finishing this work, the authors learned that a similar con-
struction was obtained independently by Dahmen and collabo-
rators. We refer to the original papers [2, 8] for details.
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Figure 4: For the Lazy wavelet all primals are Kronecker functions
(1 at the origin, 0 otherwise), while all duals are unit pulses (Dirac
distributions). Going from a finer to a coarser scale is achieved
by subsampling with the missing samples giving the wavelet spaces
(K(j) = 2�jZ, M(j) = 2�j(Z + 1=2), and xj;k = k). The well
known linear B-splines as primal scaling and wavelet functions
with Diracs as duals can be reached with dual lifting (s̃j;k;m =
1=2 �k�2�j�1;m + 1=2 �k+2�j�1;m), resulting in '̃j;k = �(� � k)

and  ̃j;m = �1=2 �(��m� 2�j�1)+ �(��m)� 1=2 �(��m+

2�j�1).

6. Evidently, the lifting scheme is only useful in case one has an
initial set of biorthogonal filters. In the following sections we
will discuss two such sets.

3.2 Fast Lifted Wavelet Transform

Before describing the particulars of our bases we give the gen-
eral structure of all transforms. Forward (analysis) and inverse
(synthesis) transforms are always performed level wise. The for-
mer begins at the finest level and goes to the root while the latter
starts at the root and descends to the leaf level. AnalysisI com-
putes the unlifted wavelet coefficients at the parent level while
AnalysisII performs the lifting if the basis is lifted otherwise it is
empty. Similarly, SynthesisI performs the inverse lifting, if any,
while SynthesisII computes the scaling function coefficients at
the child level.

Analysis
For level = leaflevel to rootlevel

AnalysisI(level)
AnalysisII(level)

Synthesis
For level = rootlevel to leaflevel

SynthesisI(level)
SynthesisII(level)

The transforms come in two major groups: (A) Lifted from the
Lazy wavelet: this involves interpolating scaling functions and a
vertex based transform; (B) Lifted from the Haar wavelet: this
involves a face based transform. We next discuss these in detail.

3.3 Interpolating Scaling Functions

We first give a trivial example of a wavelet transform: the Lazy
wavelet [27, 28]. The Lazy wavelet transform is an orthogonal
transform that essentially does not compute anything. However, it is
fundamental as it is connected with interpolating scaling functions.
The filters of the Lazy fast wavelet transform are given as

hoj;k;l = h̃oj;k;l = �k;l and goj;m;l = g̃oj;m;l = �m;l:

Consequently, the transform does not compute anything, it only
subsamples the coefficients. Figure 4 (left) illustrates this idea for
the case of the real line.

Scaling functions f'j;k j j > 0; k 2 K(j)g are called in-
terpolating if a set of points fxj;k j j > 0; k 2 K(j)g with
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Figure 5: Neighbors used in our
bases. Members of the index sets
used in the transforms are shown
in the diagram (m 2 M(j),
fv1; v2; f1; f2; e1; e2; e3; e4g = Km).

xj;k = xj+1;k exists, so that

8 k; k0 2 K(j) : 'j;k(xj;k0) = �k;k0 :

An example for such functions on the real line is shown on the
right side of Figure 4. In case of interpolating scaling functions, we
can always take the dual scaling functions to be Dirac distributions,
'̃j;k(x) = �(x � xj;k), which are immediately biorthogonal (see
the dual scaling functions on the right of Figure 4). This leads
to trivial inner products with the duals, namely evaluation of the
function at the points xj;k.

The set of filters resulting from interpolating scaling functions
and Diracs as their formal dual, can be seen as a dual lifting of the
Lazy wavelet. This implies that hj;k;k0 = �k;k0 , hj;k;m = s̃j;k;m,
g̃j;m;k = �s̃j;k;m, g̃j;m;m0 = �m;m0 . The wavelets are given by
 j;m = 'j+1;m and the dual wavelets by

 ̃j;m = �(� � xj+1;m)�
P

k
s̃j;k;m �(� � xj;k):

The linear B-spline (right side of Figure 4) can be seen to be the
dual lifting of the Lazy wavelet. Since we applied dual lifting the
primal wavelet does not yet have a vanishing moment.

Below we present other choices for the filter coefficients hj;k;m.
Typically one can choose the s̃j;k;m to insure that  ̃j;m has vanish-
ing moments (this will lead to the Quadratic scheme), or that 'j;k
is smooth (this will lead to the Butterfly scheme).

At this point we have an interpolating multiresolution analysis,
which was dually lifted from the Lazy wavelet. A disadvantage
of this multiresolution analysis is that the functions cannot provide
Riesz bases for L2. The dual functions do not even belong to L2.
This is related to the fact that the wavelet does not have a vanishing
integral since it coincides with a scaling function. Consequently,
unconditional convergence of the expansion (3) is not guaranteed.
One can now apply the primal lifting scheme to try to overcome
this drawback by ensuring that the primal wavelet has at least 1
vanishing moment. Note that this is only a necessary and not a
sufficient condition. This yields

h̃j;k;l = �k;l +
P

m
sj;k;m g̃j;m;l

gj;m;l = �m;l �
P

k
sj;k;m hj;k;l:

The resulting wavelet can be written as

 j;m = 'j+1;m �
P

k
sj;k;m 'j;k: (5)

In the situation in Figure 4 setting sj;k;m = 1=4 �m;k+2�j�1 +
1=4 �m;k�2�j�1 results in  j;m having a vanishing integral. This
choice leads us to the well known (2; 2) biorthogonal wavelet of [4].

3.4 Vertex Bases

Up to this point we have treated all index sets involved in the
various filters as abstract sets. We now make these index sets more
concrete. In order to facilitate our description we consider all index
sets as defined locally around a given site xj+1;m. A diagram is
given in Figure 5. The index of a given site is denoted m 2 M(j)
and all the neighboring vertices (xj;k with k 2 K(j)) needed in the
transform have indices v, f , and e respectively. To give some more
intuition to these index sets recall wavelets on the real line as in
Figure 4. In that case the set K(0) 3 l would consist of all integers,
while M(�1) 3 m would contain the odd and K(�1) 3 k the
even integers. For vertex based schemes we may think of the
sites m 2 M(j) as always living on the midpoint of some parent



edge (these being the “odd” indices), while the endpoints of a
given edge form the “even” indices (k 2 K(j)), and their union
l 2 K(j) [M(j) = K(j + 1) gives the set of all indices. For
each m the filters only range over some small neighborhood. We
will refer to the elements in these neighborhoods by a local naming
scheme (see Figure 5), k 2 Km � K(j). For example, the site m
lies in between the elements of Km = fv1; v2g.

For all vertex bases the unlifted scaling coefficients are simply
subsampled during analysis and upsampled during synthesis, while
the wavelet coefficients involve some computation.

AnalysisI(j):

8 k 2 K(j) : �j;k := �j+1;k

8m 2M(j) : j;m := �j+1;m �
P

k2Km
s̃j;k;m �j;k

SynthesisII(j):

8 k 2 K(j) : �j+1;k := �j;k

8m 2M(j) : �j+1;m := j;m +
P

k2Km
s̃j;k;m �j;k

We now give the details of the wavelet coefficient computations.

Lazy: As mentioned above the Lazy wavelet does nothing but
subsampling. The resulting analysis and synthesis steps then be-
come

j;m := �j+1;m and �j+1;m := j;m:

respectively. The corresponding stencil encompasses no neighbors,
i.e., the sums over s̃j;k;m are empty.

Linear: This basic interpolatory form uses the stencil k 2 K =
fv1; v2g (see Figure 5) for analysis and synthesis

j;m := �j+1;m � 1=2(�j+1;v1 + �j+1;v2)

�j+1;m := j;m + 1=2(�j;v1 + �j;v2);

respectively. Note that this stencil does properly account for the
geometry provided that them sites at level j+1 have equal geodetic
distance from the fv1; v2g sites on their parent edge. Here s̃j;v1;m =
s̃j;v2;m = 1=2.

Quadratic: The stencil for this basis is given by Km =
fv1; v2; f1; f2g (see Figure 5) and exploits the degrees of freedom
implied to kill the functions x2, y2, and z2 (and by implication the
constant function [1]). Using the coordinates of the neighbors of
the involved sites a small linear system results0
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Since x2 + y2 + z2 = 1 this system is singular (but solvable) and
the answer is chosen so as to minimize the l2 norm of the resulting
filter coefficients. Note that this is an instance of dual lifting with
effective filters s̃j;k;m = hj;k;m = �g̃j;m;k.

Butterfly: This is the only basis which uses other than immediate
neighbors (all the sitesKm denoted in Figure 5). Here s̃v1 = s̃v2 =
1=2, s̃f1 = s̃f2 = 1=8, and s̃e1 = s̃e2 = s̃e3 = s̃e4 = �1=16.
It is inspired by a subdivision scheme of Dyn et al. [11] for the
construction of smooth surfaces.

3.5 Lifting Vertex Bases

All of the above bases, Lazy, Linear, Quadratic, and Butterfly can
be lifted. In this section we use lifting to assure that the wavelet has
at least one vanishing moment. It does not improve the ability of the
dual wavelet to annihilate more functions. Consequently the ability

of the bases to compress is not increased, but smaller error results
when using them for compression (see the example in Section 3.8
and the results in Section 5). We propose wavelets of the form

 j;m = 'j+1;m � sj;v1;m 'j;v1 � sj;v2;m 'j;v2: (6)

In words, we define the wavelet at the midpoint of an edge as a linear
combination of the scaling function at the midpoint (j + 1; m) and
two scaling functions on the coarser level at the two endpoints of
the parent edge (j; v1;2). The weights sj;k;m are chosen so that the
resulting wavelet has a vanishing integral

sj;k;m = Ij+1;m=2 Ij;k with Ij;k =
R

S2 'j;k d! :

During analysis lifting is a second phase (at each level j) after the
j;m computation, while during synthesis it is a first step followed
by the regular synthesis step (Linear, Quadratic, or Butterfly as given
above). The simplicity of the expressions demonstrates the power
of the lifting scheme. Any of the previous vertex basis wavelets
can be lifted with the same expression. The integrals Ij;k can be
approximated on the finest level and then recursively computed on
the coarser levels (using the refinement relations).

AnalysisII(j):

8m 2M(j) :

�
�j;v1 += sj;v1;m j;m

�j;v2 += sj;v2;m j;m

SynthesisI(j):

8m 2M(j) :

�
�j;v1 �= sj;v1;m j;m

�j;v2 �= sj;v2;m j;m

For the interpolating case in the previous section, the scaling
function coefficients at each level are simply samples of the function
to be expanded (inner products with the '̃n;k). In the lifted case the
coefficients are defined as the inner product of the function to be
expanded with the (new) dual scaling function. This dual scaling

Figure 6: Images of the graphs of all vertex based wavelets. On the
left is the scaling function (or unlifted wavelet) while the right shows
the lifted wavelet with 1 vanishing moment. From top to bottom:
Linear, Quadratic, and Butterfly. Positive values are mapped to a
linear red scale while negative values are shown in blue. The gray
area shows the support.



dual scalingprimal scaling

Figure 7: Example Haar scaling functions on a triangular subdivi-
sion. On the left are primal functions each of height 1. On the right
are the biorthogonal duals each of height �(Ti)�1. Disjoint bases
have inner product of 0 while overlapping (coincident supports)
lead to an inner product of 1. (For the sphere all triangles are
spherical triangles.)
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Figure 8: The Bio-Haar wavelets. Note that the heights of the
functions are not drawn to scale.

function is only defined as the limit function of a non-stationary
subdivision scheme. The inner products at the finest level therefore
need to be approximated with a quadrature formula, i.e., a linear
combination of function samples. In our implementation we use a
simple one point quadrature formula at the finest level.

Figure 6 shows images of the graphs of all the vertex based  
functions for the interpolating and lifted case.

3.6 The Generalized Haar Wavelets and Face Bases

Consider spherical triangles resulting from a geodesic sphere con-
struction Tj;k � S2 with k 2 K(j) (note that the face based K(j)
are not identical to the vertex based K(j) defined earlier). They
satisfy the following properties:

1. S2 =
S

k2K(j)
Tj;k and this union is disjoint, i.e., the Tj;k

provide a simple cover of S2 for every j,
2. for every j and k, Tj;k can be written as the union of 4 “child”

triangles Tj+1;l.
Let �(Tj;k) be the spherical area of a triangle and define the scaling
functions and dual scaling functions as

'j;k = �Tj;k and '̃j;k = �(Tj;k)
�1�Tj;k :

Here�T is the function whose value is 1 forx 2 T and 0 otherwise.
The fact that the scaling function and dual scaling function are
biorthogonal follows immediately from their disjoint support (see
Figure 7). Define the Vj � L2 as

Vj = clos spanf'j;k j k 2 K(j)g:

The spaces Vj then generate a multiresolution analysis of L2(S2).
Now fix a triangle Tj;�. For the construction of the general-

ized Haar wavelets, we only need to consider the set of children
Tj+1;l=0;1;2;3 of Tj;�. We call these bases the Bio-Haar functions
(see Figure 8). The wavelets (m = 1; 2; 3) are chosen as

 j;m = 2('j+1;m � Ij+1;m=Ij+1;0 'j+1;0);

so that their integral vanishes. A set of semi-orthogonal dual
wavelets is then given by

 ̃j;m = 1=2('̃j+1;m � '̃j;�):

These bases are inspired by the construction of orthogonal Haar
wavelets for general measures, see [14, 21] where it is shown that
the Haar wavelets form an unconditional basis.

The Bio-Haar wavelets have only 1 vanishing moment, but us-
ing the dual lifting scheme, we can build a new multiresolution

1

2

Bio-Haar

Bio-Haar

3Bio-Haar

Aunts and parent

Figure 9: Illustration of the dual lifting of the dual Bio-Haar
wavelets. New dual wavelets can be constructed by taking linear
combinations of the original dual Bio-Haar wavelets and parent
level dual scaling functions. Each such linear combination is signi-
fied by a row. Solving for the necessary weights s̃j;k;m requires the
solution to a small matrix problem whose right hand side encodes
the desired constraints.

analysis, in which the dual wavelet has more vanishing moments.
Let Tj;k=4;5;6 be the neighboring triangles of Tj;� (at level j), and
Km = f�;4; 5; 6g. The new dual wavelets are

 ̃j;m = 1=2('̃j+1;m � '̃j;�)�
P

k2Km
s̃j;k;m '̃j;k:

Note that this is a special case of Equation (4). The coefficients
s̃j;k;m can now be chosen so that  ̃j;m has vanishing moments.
Figure 9 illustrates this idea. In the left column are the three dual
Bio-Haar wavelets created before. The following four columns
show the dual scaling functions over the parent and aunt triangles
Tj;k=�;4;5;6. Each row signifies one of the linear combinations.

Similarly to the Quadratic vertex basis we construct dually lifted
Bio-Haar wavelets which kill the functions x2, y2, z2, and thus 1.
This leads to the equationsP

k2Km
s̃j;k;mh'̃j;k; P i = 1=2h'̃j+1;m � '̃j;�; P i

with P = x2; y2; z2; 1. The result is a 4� 4 singular (but solvable)
matrix problem for each m = 1; 2; 3. The unknowns are the s̃j;k;m
with k = �; 4; 5; 6 and the entries of the linear system are moments
of dual scaling functions. These can be computed recursively from
the leaf level during analysis.

The Bio-Haar and lifted Bio-Haar transforms compute the scal-
ing function coefficient during analysis at the parent triangle as
a function of the scaling function coefficients at the children and
possibly the scaling function coefficients at the neighbors of the
parent triangle (in the lifted case). The three wavelet coefficients
of the parent level are stored with the children T1, T2, and T3 for
convenience in the implementation. During synthesis the scaling
function coefficient at the parent and the wavelet coefficients stored
at children T1, T2, and T3 are used to compute scaling function
coefficients at the 4 children.

As before, lifting is a second step during analysis and modifies
the wavelet coefficients. During synthesis lifting is a first step
before the inverse Bio-Haar transform is calculated.

AnalysisII(j):

8m 2M(j) : j;m �=
P

k2Km
s̃j;k;m�j;k

SynthesisI(j):

8m 2M(j) : j;m +=
P

k2Km
s̃j;k;m�j;k



3.7 Basis Properties

The lifting scheme provides us with the filter coefficients needed in
the implementation of the fast wavelet transform. To find the basis
functions and dual basis functions that are associated with them, we
use the cascade algorithm. To synthesize a scaling function 'j0;k0

one simply initializes the coefficient �j0;k = �k;k0 . The inverse
wavelet transform starting from level j0 with all wavelet coefficients
j;m with j > j0 set to zero then results in �j;k coefficients which
converge to function values of 'j0;k0 as j ! 1. In case the
cascade algorithm converges in L2 for both primal and dual scaling
functions, biorthogonal filters (as given by the lifting scheme) imply
biorthogonal basis functions.

One of the fundamental questions is how properties, such as
convergence of the cascade algorithm, Riesz bounds, and smooth-
ness, can be related back to properties of the filter sequences. This
is a very hard question and at this moment no general answer is
available to our knowledge. We thus have no mathematical proof
that the wavelets constructed form an unconditional basis except
in the case of the Haar wavelets. A recent result addressing these
questions was obtained by Dahmen [7]. In particular, it is shown
there which properties in addition to biorthogonality are needed to
assure stable bases. Whether this result can be applied to the bases
constructed here needs to be studied in the future.

Regarding smoothness, we have some partial results. It is easy
to see that the Haar wavelets are not continuous and that the Linear
wavelets are. The original Butterfly subdivision scheme is guaran-
teed to yield a C1 limit function provided the connectivity of the
vertices is at least 4. The modified Butterfly scheme that we use
on the sphere, will also give C1 limit functions, provided a locally
smooth (C1) map from the spherical triangulation to a planar tri-
angulation exists. Unfortunately, the geodesic subdivision we use
here does not have this property. However, the resulting functions
appear visually smooth (see Figure 6). We are currently working
on new spherical triangulations which have the property that the
Butterfly scheme yields a globally C1 function.

In principle, one can choose either the tetrahedron, octahedron, or
icosahedron to start the geodesic sphere construction. Each of them
has a particular number of triangles on each level, and therefore
one of them might be more suited for a particular application or
platform. The octahedron is the best choice in case of functions
defined on the hemisphere (cfr. BRDF). The icosahedron will lead
to the least area imbalance of triangles on each level and thus to
(visually) smoother basis functions.

3.8 An Example

We argued at the beginning of this section that a given wavelet
basis can be made more performant by lifting. In the section on
interpolating bases we pointed out that a wavelet basis with Diracs
for duals and a primal wavelet, which does not have 1 vanishing
moment, unconditional convergence of the resulting series expan-
sions cannot be insured anymore. We now give an example on the
sphere which illustrates the numerical consequences of lifting.

Consider the function f(s) =
p
jsxj for s = (sx; sy; sz) 2 S2.

This function is everywhere smooth except on the great circle sx =
0, where its derivative has a discontinuity. Since it is largely smooth
but for a singularity at 0, it is ideally suited to exhibit problems in
bases whose primal wavelet does not have a vanishing moment.
Figure 10 shows the relative l1 error as a function of the number of
coefficients used in the synthesis stage. In order to satisfy the same
error threshold the lifted basis requires only approximately 1=3 the
number of coefficients compared to the unlifted basis.
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Figure 10: Relative l1 error as a function of the number of
coefficients for the example function f(s) =

p
jsxj and (lifted)

Linear wavelets. With the same number of coefficients the error is
smaller by a factor of 3 or conversely a given error can be achieved
with about 1=3 the number of coefficients if the lifted basis is used.

4 Implementation

We have implemented all the described bases in an interactive appli-
cation running on an SGI Irix workstation. The basic data structure
is a forest of triangle quadtrees [10]. The root level starts with 4
(tetrahedron), 8 (octahedron), or 20 (icosahedron) spherical trian-
gles. These are recursively subdivided into 4 child triangles each.
Naming edges after their opposite vertex, and children after the ver-
tex they retain (the central child becomes T0) leads to a consistent
naming scheme throughout the entire hierarchy. Neighbor finding
is a simple O(1) (expected cost) function using bit operations on
edge and triangle names to guide pointer traversal [10]. A vertex
is allocated once and any level which contains it carries pointers to
it. Each vertex carries a single � and  slot for vertex bases, while
face bases carry a single � and  slot per spherical triangle. Our
actual implementation carries other data such as surface normals
and colors used for display, function values for error computations,
and copies of all  and � values to facilitate experimentation. These
are not necessary in a production system however.

Using a recursive data structure is more memory intensive (due
to the pointer overhead) than a flat, array based representation of
all coefficients as was used by LDW. However, using a recursive
data structure enables the use of adaptive subdivision and results
in simple recursive procedures for analysis and synthesis and a
subdivision oracle. For interactive applications it is straightforward
to select a level for display appropriate to the available graphics
performance (polygons per second).

In the following subsections we address particular issues in the
implementation.

4.1 Restricted Quadtrees

In order to support lifted bases and those which require stencils
that encompass some neighborhood the quadtrees produced need
to satisfy a restriction criterion. For the Linear vertex bases (lifted
and unlifted) and the Bio-Haar basis no restriction is required. For
Quadratic and lifted Bio-Haar bases no neighbor of a given face may
be off by more than 1 subdivision level (every child needs a proper
set of “aunts”). For the Butterfly basis a two-neighborhood must
not be off by more than 1 subdivision level. These requirements are
easily enforced during the recursive subdivision. The fact that we
only need “aunts” (as opposed to “sisters”) for the lifting scheme
allows us to have wavelets on adaptively subdivided hierarchies.
This is a crucial departure from previous constructions, e.g., tree



Basis Analysis Synthesis Lifted Basis Analysis Synthesis

Linear 3.59 3.55 Linear 5.85 5.83

Quadratic 21.79 21.00 Quadratic 24.62 24.68

Butterfly 8.43 8.42 Butterfly 10.64 10.62

Bio-Haar 4.31 6.09 Bio-Haar 42.43 36.08

Table 2: Representative timings for wavelet transforms beginning
with 4 spherical triangles and expanding to level 9 (220 faces and
219 +2 vertices). All timings are given in seconds and measured on
an SGI R4400 running at 150MHz. The initial setup time (allocating
and initializing all data structures) took 100 seconds.

wavelets employed by Gortler et al.[16] who also needed to support
adaptive subdivision.

4.2 Boundaries

In the case of a hemisphere (top 4 spherical triangles of an octahedral
subdivision), which is important for BRDF functions, the issues
associated with the boundary need to be addressed. Lifting of
vertex bases is unchanged, but the Quadratic and Butterfly schemes
(as well as the lifted Bio-Haar bases) need neighbors, which may
not exist at the boundary. This can be addressed by simply using
another, further neighbor instead of the missing neighbor (across the
boundary edge) to solve the associated matrix problem. It implicitly
corresponds to adapting filter coefficients close to the boundary
as done in interval constructions, see e.g. [5]. This construction
automatically preserves the vanishing moment property even at the
boundary. In the implementation of the Butterfly basis, we took
a different approach and chose in our implementation to simply
reflect any missing faces along the boundary.

4.3 Oracle

One of the main components in any wavelet based approximation
is the oracle. The function of the oracle is to determine which co-
efficients are important and need to be retained for a reconstruction
which is to meet some error criterion. Our system can be driven in
two modes. The first selects a deepest level to which to expand all
quadtrees. The storage requirements for this approach grow expo-
nentially in the depth of the tree. For example our implementation
cannot go deeper than 7 levels (starting from the tetrahedron) on
a 32MB Indy class machine without paging. Creating full trees,
however, allows for the examination of all coefficients throughout
the hierarchies to in effect implement a perfect oracle. The second
mode builds sparse trees based on a deep refinement oracle. In
this oracle quadtrees are built depth first exploring the expansion
to some (possibly very deep) finest level. On the way out of the
recursion a local AnalysisI is performed and any subtrees whose
wavelet coefficients are all below a user supplied threshold are
deallocated. Once the sparse tree is built the restriction criterion is
enforced and the (possibly lifted) analysis is run level wise.

The time complexity of this oracle is still exponential in the
depth of the tree, but the storage requirements are proportional
to the output size. With extra knowledge about the underlying
function more powerful oracles can be built whose time complexity
is proportional to the output size as well.

4.4 Transform Cost

The cost of a wavelet transform is proportional to the total number
of coefficients, which grows by a factor of 4 for every level. For
example, 9 levels of subdivision starting from 4 spherical triangles
result in 220 coefficients (each of � and ) for face bases and 219 +
2 (each of � and ) for vertex bases. The cost of analysis and
synthesis is proportional to the number of basis functions, while
the constant of proportionality is a function of the stencil size.

Table 2 summarizes timings of wavelet transforms for all the new
bases. The initial setup took 100 seconds and includes allocation
and initialization of all data structures and evaluation of the �9;k.
Since the latter is highly dependent on the evaluation cost of the
function to be expanded we used the constant function 1 for these
timings. None of the matrices which arise in the Quadratic, and
Bio-Haar bases (lifted and unlifted) was cached, thus the cost of
solving the associated 4�4 matrices with a column pivoted QR (for
Quadratic and lifted Bio-Haar) was incurred both during analysis
and synthesis. If one is willing to cache the results of the matrix
solutions this cost could be amortized over multiple transforms.

We make three main observations about the timings: (A) Lifting
of vertex bases adds only a small extra cost, which is almost entirely
due to the extra recursions; (B) the cost of the Butterfly basis is only
approximately twice the cost of the Linear basis even though the
stencil is much larger; (C) solving the 4 � 4 systems implied by
Quadratic and lifted Bio-Haar bases increases the cost by a factor
of approximately 5 over the linear case (note that there are twice as
many coefficients for face bases as for vertex bases).

While the total cost of an entire transform is proportional to the
number of basis functions, evaluating the resulting expansion at
a point is proportional to the depth (log of the number of basis
functions) of the tree times a constant dependent on the stencil size.
The latter provides a great advantage over such bases as spherical
harmonics whose evaluation cost at a single point is proportional to
the total number of bases used.

5 Results

In this section we report on experiments with the compression of a
planetary topographic data set, a BRDF function, and illumination
of an anisotropic glossy sphere.

Most of these experiments involved some form of coefficient
thresholding (in the oracle). In all cases this was performed as
follows. Since all our bases are normalized with respect to the
L1 norm, L2 thresholding against some user supplied threshold �
becomes

if jj;mj
p

supp( j;m) < �; j;m := 0:

Furthermore � is scaled by (max(f)�min(f)) for the given function
f to make thresholding independent of the scale of f .

5.1 Compression of Topographic Data

In this series of experiments we computed wavelet expansions of
topographic data over the entire earth. This function can be thought
of as both a surface, and as a scalar valued function giving height
(depth) for each point on a sphere. The original data, ETOPO5
from the National Oceanographic and Atmospheric Administration
gives the elevation (depth) of the earth from sea level in meters at a
resolution of 5 arc minutes at the equator. Due to the large size of
this data set we first resampled it to 10 arc minutes resolution. All
expansions were performed starting from the tetrahedron followed
by subdivision to level 9.

Figure 11 shows the results of these experiments (left and mid-
dle). After computing the coefficients of the respective expansions
at the finest level of the subdivision an analysis was performed.
After this step all wavelet coefficients below a given threshold were
zeroed and the function was reconstructed. The thresholds were
successively set to 2�i for i = 0; : : : ; 17 resulting in the number of
coefficients and relative l1 error plotted (left graph). The error was
computed with a numerical quadrature one level below the finest
subdivision to insure an accurate error estimation. The results are
plotted for all vertex and face bases (Linear, Quadratic, Butterfly,
Bio-Haar, lifted and unlifted). We also computed l2 and l1 error
norms and the resulting graphs (not shown) are essentially identical
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Figure 11: Relative l1 error as a function of the number of coefficients used during the reconstruction of the earth topographic data set (left
and middle) and BRDF function (right). The six vertex bases and two face bases perform essentially the same for the earth. On the left with
full expansion of the quadtrees to level 9 and thresholding. In the middle the results of the deep refinement oracle to level 10 with only a
sparse tree construction. The curves are identical validating the refinement strategy. On the right the results of deep refinement to level 9 for
the BRDF. Here the individual bases are clearly distinguished.

(although the l1 error stays initially high before falling off due to
deep canyon features). The plot reaches to about one quarter of
all coefficients. The observed regime is linear as one would expect
from the bases used.

The most striking observation about these error graphs is the fact
that all bases perform similar. This is due to the fact that the un-
derlying function is non-smooth. Consequently smoother bases do
not perform any better than less performant ones. However, when
drawing pictures of highly compressed versions of the data set the
smoother bases produce visually better pictures (see Figure 12).
Depending on the allowed error the compression can be quite dra-
matic. For example, 7 200 coefficients are sufficient to reach 7%
error, while 119 000 are required to reach 2% error.

In a second set of experiments we used the deep refinement
oracle (see Section 4.3) to explore the wavelet expansion to 10
levels (potentially quadrupling the number of coefficients) with
successively smaller thresholds, once again plotting the resulting
error in the middle graph of Figure 11. The error as a function
of coefficients used is the same as the relationship found by the
perfect oracle. This validates our deep refinement oracle strategy.
Memory requirements of this approach are drastically reduced. For
example, using a threshold of 2�9 during oracle driven refinement
to level 10 resulted in 4 616 coefficients and consumed a total of
27MB (including 10MB for the original data set). Lowering the
threshold to 2�10 yielded 10 287 coefficients and required 43MB
(using the lifted Butterfly basis in both cases).

Finally Figure 12 shows some of the resulting adaptive data sets
rendered with RenderMan using the Butterfly basis and a pseudo
coloring, which maps elevation onto a piecewise linear color scale.
Total runtime for oracle driven analysis and synthesis was 10 min-
utes on an SGI R4400 at 150MHz.

5.1.1 Comparison with LDW

The earth data set allows for a limited comparison of our re-
sults with those of LDW. They also compressed the ETOPO5 data
set using pseudo orthogonalized (over a 2 neighborhood) Linear
wavelets defined over the octahedron. They subdivide to 9 levels
(on a 128MB machine) which corresponds to twice as many coef-
ficients as we used (on a 180MB machine), suggesting a storage
overhead of about 3 in our implementation. It is hard to compare
the quality of the bases without knowing the exact basis used or
the errors in the compressed reconstruction. However, LDW report
the number of coefficients selected for a given threshold (741 for

Figure 12: Two views of the earth data set with 15 000 and 190 000
coefficients respectively using the Butterfly basis with l1 errors of
0:05 and 0:01 respectively. In the image on the left coastal re-
gions are rather smoothed since they contain little height variation
(England and the Netherlands are merged and the Baltic sea is
desertificated). However, such spiky features as the Cape Verde
Islands off the coast of Africa are clearly preserved.

0:02, 15 101 for 0:002, and 138 321 for 0:0005). Depending on the
basis used we generally select fewer coefficients (6 000�15 000 for
0:002 and 28 000 � 65 000 for 0:0005). As timings they give 588
seconds (on a 100 MHz R4000) for analysis which is significantly
longer than our smoothest basis (lifted Butterfly). Their recon-
struction time ranges from 75 (741 coefficients) to 1 230 (138 058
coefficients) seconds which is also significantly longer than our
times (see Table 2). We hypothesize that the timing and storage
differences are largely due to their use of flat array based data struc-
tures. These do not require as much memory, but they are more
compute intensive in the sparse polygonal reconstruction phase.

5.2 BRDF Compression

In this series of experiments we explore the potential for efficiently
representing BRDF functions with spherical wavelets. BRDF func-
tions can arise from measurements, simulation, or theoretical mod-
els. Depending on the intended application different models may
be preferable. Expanding BRDF functions in terms of locally sup-
ported hierarchical functions is particularly useful for wavelet based
finite element illumination algorithms. It also has obvious appli-
cations for simulation derived BRDF functions such as those of
Westin et al. [30] and Gondek et al. [15].



Figure 13: Graphs of adaptive oracle driven approximations of the
Schlick BRDF with 19, 73, and 203 coefficients respectively (left
to right), using the lifted Butterfly basis. The associated thresholds
were 2�3, 2�6, and 2�9 respectively, resulting in relative l1 errors
of 0:35, 0:065, and 0:015 respectively.

The domain of a complete BRDF is a hemisphere times a hemi-
sphere. In our experiments we consider only a fixed incoming
direction and expand the resulting function over all outgoing direc-
tions (single hemisphere). To facilitate the computation of errors
we used the BRDF model proposed by Schlick [23]. It is a simple
Padé approximant to a micro facet model with geometric shad-
owing, a microfacet distribution function, but no Fresnel term. It
has roughness (r 2 [0; 1], where 0 is Dirac mirror reflection and
1 perfectly diffuse) and anisotropy (p 2 [0; 1], where 0 is Dirac
style anisotropy, and 1 perfect isotropy) parameters. To improve
the numerical properties of the BRDF we followed the suggestion
of Westin et al. [30] and expanded cos �ofr(~!i; 0; �).

In the experiments we used all 8 bases but specialized to the
hemisphere. The parameters were �i = �=3, r = 0:05, and p = 1.
The results are summarized in Figure 11 (rightmost graph). It shows
the relative l1 error as a function of the number of coefficients used.
This time we can clearly see how the various bases differentiate
themselves in terms of their ability to represent the function within
some error bound with a given budget of coefficients. We make
several observations

- all lifted bases perform better than their unlifted versions,
confirming our assertion that lifted bases are more performant;

- increasing smoothness in the bases (Butterfly) is more im-
portant than increasing the number of vanishing moments
(Quadratic);

- dual lifting to increase dual vanishing moments increases com-
pression ability dramatically (Bio-Haar and lifted Bio-Haar);

- overall the face based schemes do not perform as well as the
vertex based schemes.

Figure 13 shows images of the graphs of some of the expansions.
These used the lifted Butterfly basis with an adaptive refinement
oracle which explored the expansion to level 9 (i.e., it examined
219 coefficients). The final number of coefficients and associated
relative l1 errors were (left to right) 19 coefficients (l1 = 0:35), 73
coefficients (l1 = 0:065), and 203 coefficients (l1 = 0:015). Total
runtime was 170 seconds on an SGI R4400 at 150MHz.

5.3 Illumination

To explore the potential of these bases for global illumination algo-
rithms we performed a simple simulation computing the radiance
over a glossy, anisotropic sphere due to two area light sources. We
emphasize that this is not a solution involving any multiple reflec-
tions, but it serves as a simple example to show the potential of
these bases for hierarchical illumination algorithms. It also serves
as an example of applying a finite element approach to a curved
object (sphere) without polygonalizing it.

Figure 14 shows the results of this simulation. We used the lifted
Butterfly basis and the BRDF model of Schlick with r = 0:05,
p = 0:05, and an additive diffuse component of 0:005. Two area
light sources illuminate the red sphere. Note the fine detail in the
pinched off region in the center of the “hot” spot and also at the

Figure 14: Results of an illumination simulation using the lifted
Butterfly basis. A red, glossy, anisotropic sphere is illuminated
by 2 area light sources. Left: solution with 2 000 coefficients
(l1 = 0:017). Right: solution with 5 000 coefficients (l1 = 0:0035)

north pole where all “grooves” converge.

6 Conclusions and Future Directions

In this paper we have introduced two new families of wavelets on the
sphere. One family is based on interpolating scaling functions and
one on the generalized Haar wavelets. They employ a generalization
of multiresolution analysis to arbitrary surfaces and can be derived
in a straightforward manner from the trivial multiresolution analysis
with the lifting scheme. The resulting algorithms are simple and
efficient. We reported on the application of these bases to the
compression of earth data sets, BRDF functions and illumination
computations and showed their potential for these applications. We
found that

- for smooth functions the lifted bases perform significantly
better than the unlifted bases;

- increasing the dual vanishing moments leads to better com-
pression;

- smoother bases, even with only one vanishing moment, tend
to perform better for smooth functions;

- our constructions allow non-equally subdivided triangulations
of the sphere.

We believe that many applications can benefit from these wavelet
bases. For example, using their localization properties a number
of spherical image processing algorithms, such as local smoothing
and enhancement, can be realized in a straightforward and efficient
way [25].

While we limited our examination to the sphere, the construction
presented here can be applied to other surfaces. In the case of
the sphere enforcing vanishing polynomial moments was natural
because of their connection with spherical harmonics. In the case of
a general, potentially non-smooth (Lipschitz) surface, polynomial
moments do not necessarily make much sense. Therefore, one
might want to work with local maps from the surface to the tangent
plane and enforce vanishing moment conditions in this plane.

Future research includes
- the generalization to arbitrary surfaces,

- the incorporation of smoother (C2) subdivision schemes as
recently introduced by Dyn et al. (personal communication,
1995),

- the use of these bases in applications such as the solution of
differential and integral equations on the sphere as needed in,
e.g., illumination or climate modeling.
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